ladybird/Userland/Libraries/LibDSP/Synthesizers.cpp
kleines Filmröllchen 4941cffdd0 Piano+LibDSP: Move Track to LibDSP
This is a tangly commit and it fixes all the bugs that a plain move
would have caused (i.e. we need to touch other logic which had wrong
assumptions).
2022-07-22 19:35:41 +01:00

171 lines
6.4 KiB
C++

/*
* Copyright (c) 2021-2022, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/HashMap.h>
#include <AK/Math.h>
#include <AK/Random.h>
#include <AK/RefPtr.h>
#include <AK/StdLibExtras.h>
#include <LibAudio/Sample.h>
#include <LibDSP/Envelope.h>
#include <LibDSP/Music.h>
#include <LibDSP/Processor.h>
#include <LibDSP/Synthesizers.h>
namespace DSP::Synthesizers {
Classic::Classic(NonnullRefPtr<Transport> transport)
: DSP::SynthesizerProcessor(transport)
, m_waveform("Waveform"sv, Waveform::Saw)
, m_attack("Attack"sv, 0.01, 2000, 5, Logarithmic::Yes)
, m_decay("Decay"sv, 0.01, 20'000, 80, Logarithmic::Yes)
, m_sustain("Sustain"sv, 0.001, 1, 0.725, Logarithmic::No)
, m_release("Release", 0.01, 6'000, 120, Logarithmic::Yes)
{
m_parameters.append(m_waveform);
m_parameters.append(m_attack);
m_parameters.append(m_decay);
m_parameters.append(m_sustain);
m_parameters.append(m_release);
}
void Classic::process_impl(Signal const& input_signal, [[maybe_unused]] Signal& output_signal)
{
auto const& in = input_signal.get<RollNotes>();
auto& output_samples = output_signal.get<FixedArray<Sample>>();
// Do this for every time step and set the signal accordingly.
for (size_t sample_index = 0; sample_index < output_samples.size(); ++sample_index) {
Sample& out = output_samples[sample_index];
out = {};
u32 sample_time = m_transport->time() + sample_index;
Array<Optional<PitchedEnvelope>, note_frequencies.size()> playing_envelopes;
// "Press" the necessary notes in the internal representation,
// and "release" all of the others
for (u8 i = 0; i < note_frequencies.size(); ++i) {
if (auto maybe_note = in[i]; maybe_note.has_value())
m_playing_notes[i] = maybe_note;
if (m_playing_notes[i].has_value()) {
Envelope note_envelope = m_playing_notes[i]->to_envelope(sample_time, m_attack * m_transport->ms_sample_rate(), m_decay * m_transport->ms_sample_rate(), m_release * m_transport->ms_sample_rate());
// There are two conditions for removing notes:
// 1. The envelope has expired, regardless of whether the note was still given to us in the input.
if (!note_envelope.is_active()) {
m_playing_notes[i] = {};
continue;
}
// 2. The envelope has not expired, but the note was not given to us.
// This means that the note abruptly stopped playing; i.e. the audio infrastructure didn't know the length of the notes initially.
// That basically means we're dealing with a keyboard note. Chop its end time to end now.
if (!note_envelope.is_release() && !in[i].has_value()) {
// dbgln("note {} not released, setting release phase, envelope={}", i, note_envelope.envelope);
note_envelope.set_release(0);
auto real_note = *m_playing_notes[i];
real_note.off_sample = sample_time;
m_playing_notes[i] = real_note;
}
playing_envelopes[i] = PitchedEnvelope { note_envelope, i };
}
}
for (auto envelope : playing_envelopes) {
if (!envelope.has_value())
continue;
double volume = volume_from_envelope(*envelope);
double wave = wave_position(sample_time, envelope->note);
out += volume * wave;
}
}
}
// Linear ADSR envelope with no peak adjustment.
double Classic::volume_from_envelope(Envelope const& envelope) const
{
switch (static_cast<EnvelopeState>(envelope)) {
case EnvelopeState::Off:
return 0;
case EnvelopeState::Attack:
return envelope.attack();
case EnvelopeState::Decay:
// As we fade from high (1) to low (headroom above the sustain level) here, use 1-decay as the interpolation.
return (1. - envelope.decay()) * (1. - m_sustain) + m_sustain;
case EnvelopeState::Sustain:
return m_sustain;
case EnvelopeState::Release:
// Same goes for the release fade from high to low.
return (1. - envelope.release()) * m_sustain;
}
VERIFY_NOT_REACHED();
}
double Classic::wave_position(u32 sample_time, u8 note)
{
switch (m_waveform) {
case Sine:
return sin_position(sample_time, note);
case Triangle:
return triangle_position(sample_time, note);
case Square:
return square_position(sample_time, note);
case Saw:
return saw_position(sample_time, note);
case Noise:
return noise_position(sample_time, note);
}
VERIFY_NOT_REACHED();
}
double Classic::samples_per_cycle(u8 note) const
{
return m_transport->sample_rate() / note_frequencies[note];
}
double Classic::sin_position(u32 sample_time, u8 note) const
{
double spc = samples_per_cycle(note);
double cycle_pos = sample_time / spc;
return AK::sin(cycle_pos * 2 * AK::Pi<double>);
}
// Absolute value of the saw wave "flips" the negative portion into the positive, creating a ramp up and down.
double Classic::triangle_position(u32 sample_time, u8 note) const
{
double saw = saw_position(sample_time, note);
return AK::fabs(saw) * 2 - 1;
}
// The first half of the cycle period is 1, the other half -1.
double Classic::square_position(u32 sample_time, u8 note) const
{
double spc = samples_per_cycle(note);
double progress = AK::fmod(static_cast<double>(sample_time), spc) / spc;
return progress >= 0.5 ? -1 : 1;
}
// Modulus creates inverse saw, which we need to flip and scale.
double Classic::saw_position(u32 sample_time, u8 note) const
{
double spc = samples_per_cycle(note);
double unscaled = spc - AK::fmod(static_cast<double>(sample_time), spc);
return unscaled / (samples_per_cycle(note) / 2.) - 1;
}
// We resample the noise twenty times per cycle.
double Classic::noise_position(u32 sample_time, u8 note)
{
double spc = samples_per_cycle(note);
u32 getrandom_interval = max(static_cast<u32>(spc / 2), 1);
// Note that this code only works well if the processor is called for every increment of time.
if (sample_time % getrandom_interval == 0)
last_random[note] = (get_random<u16>() / static_cast<double>(NumericLimits<u16>::max()) - .5) * 2;
return last_random[note];
}
}