ladybird/Userland/Libraries/LibWeb/Painting/StackingContext.cpp
Andreas Kling 655d9d1462 LibWeb: Make CSSPixels and Length use 64-bit (double) floating point
This fixes a plethora of rounding problems on many websites.
In the future, we may want to replace this with fixed-point arithmetic
(bug #18566) for performance (and consistency with other engines),
but in the meantime this makes the web look a bit better. :^)

There's a lot more things that could be converted to doubles, which
would reduce the amount of casting necessary in this patch.
We can do that incrementally, however.
2023-05-24 14:40:35 +02:00

625 lines
29 KiB
C++

/*
* Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/ExtraMathConstants.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Matrix4x4.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Rect.h>
#include <LibWeb/CSS/StyleValues/TransformationStyleValue.h>
#include <LibWeb/Layout/Box.h>
#include <LibWeb/Layout/ReplacedBox.h>
#include <LibWeb/Layout/Viewport.h>
#include <LibWeb/Painting/PaintableBox.h>
#include <LibWeb/Painting/StackingContext.h>
namespace Web::Painting {
static void paint_node(Layout::Node const& layout_node, PaintContext& context, PaintPhase phase)
{
if (auto const* paintable = layout_node.paintable())
paintable->paint(context, phase);
}
StackingContext::StackingContext(Layout::Box& box, StackingContext* parent)
: m_box(box)
, m_transform(combine_transformations(m_box->computed_values().transformations()))
, m_transform_origin(compute_transform_origin())
, m_parent(parent)
{
VERIFY(m_parent != this);
if (m_parent)
m_parent->m_children.append(this);
}
void StackingContext::sort()
{
quick_sort(m_children, [](auto& a, auto& b) {
auto a_z_index = a->m_box->computed_values().z_index().value_or(0);
auto b_z_index = b->m_box->computed_values().z_index().value_or(0);
if (a_z_index == b_z_index)
return a->m_box->is_before(b->m_box);
return a_z_index < b_z_index;
});
for (auto* child : m_children)
child->sort();
}
static PaintPhase to_paint_phase(StackingContext::StackingContextPaintPhase phase)
{
// There are not a fully correct mapping since some stacking context phases are combined.
switch (phase) {
case StackingContext::StackingContextPaintPhase::Floats:
case StackingContext::StackingContextPaintPhase::BackgroundAndBordersForInlineLevelAndReplaced:
case StackingContext::StackingContextPaintPhase::BackgroundAndBorders:
return PaintPhase::Background;
case StackingContext::StackingContextPaintPhase::Foreground:
return PaintPhase::Foreground;
case StackingContext::StackingContextPaintPhase::FocusAndOverlay:
return PaintPhase::Overlay;
default:
VERIFY_NOT_REACHED();
}
}
void StackingContext::paint_descendants(PaintContext& context, Layout::Node const& box, StackingContextPaintPhase phase) const
{
if (auto* paintable = box.paintable()) {
paintable->before_children_paint(context, to_paint_phase(phase));
paintable->apply_clip_overflow_rect(context, to_paint_phase(phase));
}
box.for_each_child([&](auto& child) {
// If `child` establishes its own stacking context, skip over it.
if (is<Layout::Box>(child) && child.paintable() && static_cast<Layout::Box const&>(child).paintable_box()->stacking_context())
return;
// If `child` is positioned with a z-index of `0` or `auto`, skip over it.
if (child.is_positioned()) {
auto const& z_index = child.computed_values().z_index();
if (!z_index.has_value() || z_index.value() == 0)
return;
}
bool child_is_inline_or_replaced = child.is_inline() || is<Layout::ReplacedBox>(child);
switch (phase) {
case StackingContextPaintPhase::BackgroundAndBorders:
if (!child_is_inline_or_replaced && !child.is_floating()) {
paint_node(child, context, PaintPhase::Background);
paint_node(child, context, PaintPhase::Border);
paint_descendants(context, child, phase);
}
break;
case StackingContextPaintPhase::Floats:
if (child.is_floating()) {
paint_node(child, context, PaintPhase::Background);
paint_node(child, context, PaintPhase::Border);
paint_descendants(context, child, StackingContextPaintPhase::BackgroundAndBorders);
}
paint_descendants(context, child, phase);
break;
case StackingContextPaintPhase::BackgroundAndBordersForInlineLevelAndReplaced:
if (child_is_inline_or_replaced) {
paint_node(child, context, PaintPhase::Background);
paint_node(child, context, PaintPhase::Border);
paint_descendants(context, child, StackingContextPaintPhase::BackgroundAndBorders);
}
paint_descendants(context, child, phase);
break;
case StackingContextPaintPhase::Foreground:
paint_node(child, context, PaintPhase::Foreground);
paint_descendants(context, child, phase);
break;
case StackingContextPaintPhase::FocusAndOverlay:
if (context.has_focus()) {
paint_node(child, context, PaintPhase::FocusOutline);
}
paint_node(child, context, PaintPhase::Overlay);
paint_descendants(context, child, phase);
break;
}
});
if (auto* paintable = box.paintable()) {
paintable->clear_clip_overflow_rect(context, to_paint_phase(phase));
paintable->after_children_paint(context, to_paint_phase(phase));
}
}
void StackingContext::paint_internal(PaintContext& context) const
{
// For a more elaborate description of the algorithm, see CSS 2.1 Appendix E
// Draw the background and borders for the context root (steps 1, 2)
paint_node(m_box, context, PaintPhase::Background);
paint_node(m_box, context, PaintPhase::Border);
auto paint_child = [&](auto* child) {
auto parent = child->m_box->parent();
auto* parent_paintable = parent ? parent->paintable() : nullptr;
if (parent_paintable)
parent_paintable->before_children_paint(context, PaintPhase::Foreground);
auto containing_block = child->m_box->containing_block();
auto* containing_block_paintable = containing_block ? containing_block->paintable() : nullptr;
if (containing_block_paintable)
containing_block_paintable->apply_clip_overflow_rect(context, PaintPhase::Foreground);
child->paint(context);
if (parent_paintable)
parent_paintable->after_children_paint(context, PaintPhase::Foreground);
if (containing_block_paintable)
containing_block_paintable->clear_clip_overflow_rect(context, PaintPhase::Foreground);
};
// Draw positioned descendants with negative z-indices (step 3)
for (auto* child : m_children) {
if (child->m_box->computed_values().z_index().has_value() && child->m_box->computed_values().z_index().value() < 0)
paint_child(child);
}
// Draw the background and borders for block-level children (step 4)
paint_descendants(context, m_box, StackingContextPaintPhase::BackgroundAndBorders);
// Draw the non-positioned floats (step 5)
paint_descendants(context, m_box, StackingContextPaintPhase::Floats);
// Draw inline content, replaced content, etc. (steps 6, 7)
paint_descendants(context, m_box, StackingContextPaintPhase::BackgroundAndBordersForInlineLevelAndReplaced);
paint_node(m_box, context, PaintPhase::Foreground);
paint_descendants(context, m_box, StackingContextPaintPhase::Foreground);
// Draw positioned descendants with z-index `0` or `auto` in tree order. (step 8)
// NOTE: Non-positioned descendants that establish stacking contexts with z-index `0` or `auto` are also painted here.
// FIXME: There's more to this step that we have yet to understand and implement.
m_box->paintable_box()->for_each_in_subtree_of_type<PaintableBox>([&](PaintableBox const& paintable_box) {
auto const& z_index = paintable_box.computed_values().z_index();
if (auto* child = paintable_box.stacking_context()) {
if (!z_index.has_value() || z_index.value() == 0)
paint_child(child);
return TraversalDecision::SkipChildrenAndContinue;
}
if (z_index.has_value() && z_index.value() != 0)
return TraversalDecision::Continue;
if (!paintable_box.layout_box().is_positioned())
return TraversalDecision::Continue;
// At this point, `paintable_box` is a positioned descendant with z-index: auto
// but no stacking context of its own.
// FIXME: This is basically duplicating logic found elsewhere in this same function. Find a way to make this more elegant.
auto parent = paintable_box.layout_node().parent();
auto* parent_paintable = parent ? parent->paintable() : nullptr;
if (parent_paintable)
parent_paintable->before_children_paint(context, PaintPhase::Foreground);
auto containing_block = paintable_box.layout_node().containing_block();
auto* containing_block_paintable = containing_block ? containing_block->paintable() : nullptr;
if (containing_block_paintable)
containing_block_paintable->apply_clip_overflow_rect(context, PaintPhase::Foreground);
paint_node(paintable_box.layout_box(), context, PaintPhase::Background);
paint_node(paintable_box.layout_box(), context, PaintPhase::Border);
paint_descendants(context, paintable_box.layout_box(), StackingContextPaintPhase::BackgroundAndBorders);
paint_descendants(context, paintable_box.layout_box(), StackingContextPaintPhase::Floats);
paint_descendants(context, paintable_box.layout_box(), StackingContextPaintPhase::BackgroundAndBordersForInlineLevelAndReplaced);
paint_node(paintable_box.layout_box(), context, PaintPhase::Foreground);
paint_descendants(context, paintable_box.layout_box(), StackingContextPaintPhase::Foreground);
paint_node(paintable_box.layout_box(), context, PaintPhase::FocusOutline);
paint_node(paintable_box.layout_box(), context, PaintPhase::Overlay);
paint_descendants(context, paintable_box.layout_box(), StackingContextPaintPhase::FocusAndOverlay);
if (parent_paintable)
parent_paintable->after_children_paint(context, PaintPhase::Foreground);
if (containing_block_paintable)
containing_block_paintable->clear_clip_overflow_rect(context, PaintPhase::Foreground);
return TraversalDecision::Continue;
});
// Draw other positioned descendants (step 9)
for (auto* child : m_children) {
if (child->m_box->computed_values().z_index().has_value() && child->m_box->computed_values().z_index().value() >= 1)
paint_child(child);
}
paint_node(m_box, context, PaintPhase::FocusOutline);
paint_node(m_box, context, PaintPhase::Overlay);
paint_descendants(context, m_box, StackingContextPaintPhase::FocusAndOverlay);
}
Gfx::FloatMatrix4x4 StackingContext::get_transformation_matrix(CSS::Transformation const& transformation) const
{
auto count = transformation.values.size();
auto value = [this, transformation](size_t index, Optional<CSS::Length const&> reference_length = {}) -> float {
return transformation.values[index].visit(
[this, reference_length](CSS::LengthPercentage const& value) -> float {
if (reference_length.has_value()) {
return value.resolved(m_box, reference_length.value()).to_px(m_box).value();
}
return value.length().to_px(m_box).value();
},
[this](CSS::AngleOrCalculated const& value) {
return value.resolved(m_box).to_degrees() * static_cast<float>(M_DEG2RAD);
},
[](float value) {
return value;
});
};
auto reference_box = paintable_box().absolute_rect();
auto width = CSS::Length::make_px(reference_box.width());
auto height = CSS::Length::make_px(reference_box.height());
switch (transformation.function) {
case CSS::TransformFunction::Matrix:
if (count == 6)
return Gfx::FloatMatrix4x4(value(0), value(2), 0, value(4),
value(1), value(3), 0, value(5),
0, 0, 1, 0,
0, 0, 0, 1);
break;
case CSS::TransformFunction::Matrix3d:
if (count == 16)
return Gfx::FloatMatrix4x4(value(0), value(4), value(8), value(12),
value(1), value(5), value(9), value(13),
value(2), value(6), value(10), value(14),
value(3), value(7), value(11), value(15));
break;
case CSS::TransformFunction::Translate:
if (count == 1)
return Gfx::FloatMatrix4x4(1, 0, 0, value(0, width),
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
if (count == 2)
return Gfx::FloatMatrix4x4(1, 0, 0, value(0, width),
0, 1, 0, value(1, height),
0, 0, 1, 0,
0, 0, 0, 1);
break;
case CSS::TransformFunction::Translate3d:
return Gfx::FloatMatrix4x4(1, 0, 0, value(0, width),
0, 1, 0, value(1, height),
0, 0, 1, value(2),
0, 0, 0, 1);
break;
case CSS::TransformFunction::TranslateX:
if (count == 1)
return Gfx::FloatMatrix4x4(1, 0, 0, value(0, width),
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
break;
case CSS::TransformFunction::TranslateY:
if (count == 1)
return Gfx::FloatMatrix4x4(1, 0, 0, 0,
0, 1, 0, value(0, height),
0, 0, 1, 0,
0, 0, 0, 1);
break;
case CSS::TransformFunction::Scale:
if (count == 1)
return Gfx::FloatMatrix4x4(value(0), 0, 0, 0,
0, value(0), 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
if (count == 2)
return Gfx::FloatMatrix4x4(value(0), 0, 0, 0,
0, value(1), 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
break;
case CSS::TransformFunction::ScaleX:
if (count == 1)
return Gfx::FloatMatrix4x4(value(0), 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
break;
case CSS::TransformFunction::ScaleY:
if (count == 1)
return Gfx::FloatMatrix4x4(1, 0, 0, 0,
0, value(0), 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
break;
case CSS::TransformFunction::RotateX:
if (count == 1)
return Gfx::rotation_matrix({ 1.0f, 0.0f, 0.0f }, value(0));
break;
case CSS::TransformFunction::RotateY:
if (count == 1)
return Gfx::rotation_matrix({ 0.0f, 1.0f, 0.0f }, value(0));
break;
case CSS::TransformFunction::Rotate:
case CSS::TransformFunction::RotateZ:
if (count == 1)
return Gfx::rotation_matrix({ 0.0f, 0.0f, 1.0f }, value(0));
break;
default:
dbgln_if(LIBWEB_CSS_DEBUG, "FIXME: Unhandled transformation function {}", MUST(CSS::TransformationStyleValue::create(transformation.function, {}))->to_string());
}
return Gfx::FloatMatrix4x4::identity();
}
Gfx::FloatMatrix4x4 StackingContext::combine_transformations(Vector<CSS::Transformation> const& transformations) const
{
auto matrix = Gfx::FloatMatrix4x4::identity();
for (auto const& transform : transformations)
matrix = matrix * get_transformation_matrix(transform);
return matrix;
}
// FIXME: This extracts the affine 2D part of the full transformation matrix.
// Use the whole matrix when we get better transformation support in LibGfx or use LibGL for drawing the bitmap
Gfx::AffineTransform StackingContext::affine_transform_matrix() const
{
auto* m = m_transform.elements();
return Gfx::AffineTransform(m[0][0], m[1][0], m[0][1], m[1][1], m[0][3], m[1][3]);
}
void StackingContext::paint(PaintContext& context) const
{
Gfx::PainterStateSaver saver(context.painter());
if (m_box->is_fixed_position()) {
context.painter().translate(-context.painter().translation());
}
auto opacity = m_box->computed_values().opacity();
if (opacity == 0.0f)
return;
auto affine_transform = affine_transform_matrix();
auto translation = context.rounded_device_point(affine_transform.translation().to_type<CSSPixels>()).to_type<int>().to_type<float>();
affine_transform.set_translation(translation);
if (opacity < 1.0f || !affine_transform.is_identity_or_translation()) {
auto transform_origin = this->transform_origin();
auto source_rect = context.enclosing_device_rect(paintable_box().absolute_paint_rect()).to_type<int>().to_type<float>().translated(-transform_origin);
auto transformed_destination_rect = affine_transform.map(source_rect).translated(transform_origin);
auto destination_rect = transformed_destination_rect.to_rounded<int>();
// FIXME: We should find a way to scale the paintable, rather than paint into a separate bitmap,
// then scale it. This snippet now copies the background at the destination, then scales it down/up
// to the size of the source (which could add some artefacts, though just scaling the bitmap already does that).
// We need to copy the background at the destination because a bunch of our rendering effects now rely on
// being able to sample the painter (see border radii, shadows, filters, etc).
CSSPixelPoint destination_clipped_fixup {};
auto try_get_scaled_destination_bitmap = [&]() -> ErrorOr<NonnullRefPtr<Gfx::Bitmap>> {
Gfx::IntRect actual_destination_rect;
auto bitmap = TRY(context.painter().get_region_bitmap(destination_rect, Gfx::BitmapFormat::BGRA8888, actual_destination_rect));
// get_region_bitmap() may clip to a smaller region if the requested rect goes outside the painter, so we need to account for that.
destination_clipped_fixup = CSSPixelPoint { destination_rect.location() - actual_destination_rect.location() };
destination_rect = actual_destination_rect;
if (source_rect.size() != transformed_destination_rect.size()) {
auto sx = static_cast<float>(source_rect.width()) / transformed_destination_rect.width();
auto sy = static_cast<float>(source_rect.height()) / transformed_destination_rect.height();
bitmap = TRY(bitmap->scaled(sx, sy));
destination_clipped_fixup.scale_by(sx, sy);
}
return bitmap;
};
auto bitmap_or_error = try_get_scaled_destination_bitmap();
if (bitmap_or_error.is_error())
return;
auto bitmap = bitmap_or_error.release_value_but_fixme_should_propagate_errors();
Gfx::Painter painter(bitmap);
painter.translate(context.rounded_device_point(-paintable_box().absolute_paint_rect().location() + destination_clipped_fixup).to_type<int>());
auto paint_context = context.clone(painter);
paint_internal(paint_context);
if (destination_rect.size() == bitmap->size())
context.painter().blit(destination_rect.location(), *bitmap, bitmap->rect(), opacity);
else
context.painter().draw_scaled_bitmap(destination_rect, *bitmap, bitmap->rect(), opacity, Gfx::Painter::ScalingMode::BilinearBlend);
} else {
Gfx::PainterStateSaver saver(context.painter());
context.painter().translate(affine_transform.translation().to_rounded<int>());
paint_internal(context);
}
}
Gfx::FloatPoint StackingContext::compute_transform_origin() const
{
auto style_value = m_box->computed_values().transform_origin();
// FIXME: respect transform-box property
auto reference_box = paintable_box().absolute_border_box_rect();
auto x = reference_box.left() + style_value.x.to_px(m_box, reference_box.width());
auto y = reference_box.top() + style_value.y.to_px(m_box, reference_box.height());
return { static_cast<float>(x.value()), static_cast<float>(y.value()) };
}
template<typename U, typename Callback>
static TraversalDecision for_each_in_inclusive_subtree_of_type_within_same_stacking_context_in_reverse(Paintable const& paintable, Callback callback)
{
if (is<PaintableBox>(paintable) && static_cast<PaintableBox const&>(paintable).stacking_context()) {
// Note: Include the stacking context (so we can hit test it), but don't recurse into it.
if (auto decision = callback(static_cast<U const&>(paintable)); decision != TraversalDecision::Continue)
return decision;
return TraversalDecision::SkipChildrenAndContinue;
}
for (auto* child = paintable.last_child(); child; child = child->previous_sibling()) {
if (for_each_in_inclusive_subtree_of_type_within_same_stacking_context_in_reverse<U>(*child, callback) == TraversalDecision::Break)
return TraversalDecision::Break;
}
if (is<U>(paintable)) {
if (auto decision = callback(static_cast<U const&>(paintable)); decision != TraversalDecision::Continue)
return decision;
}
return TraversalDecision::Continue;
}
template<typename U, typename Callback>
static TraversalDecision for_each_in_subtree_of_type_within_same_stacking_context_in_reverse(Paintable const& paintable, Callback callback)
{
for (auto* child = paintable.last_child(); child; child = child->previous_sibling()) {
if (for_each_in_inclusive_subtree_of_type_within_same_stacking_context_in_reverse<U>(*child, callback) == TraversalDecision::Break)
return TraversalDecision::Break;
}
return TraversalDecision::Continue;
}
Optional<HitTestResult> StackingContext::hit_test(CSSPixelPoint position, HitTestType type) const
{
if (!m_box->is_visible())
return {};
auto transform_origin = this->transform_origin().to_type<CSSPixels>();
// NOTE: This CSSPixels -> Float -> CSSPixels conversion is because we can't AffineTransform::map() a CSSPixelPoint.
Gfx::FloatPoint offset_position {
position.x().value() - transform_origin.x().value(),
position.y().value() - transform_origin.y().value()
};
auto transformed_position = affine_transform_matrix().inverse().value_or({}).map(offset_position).to_type<CSSPixels>() + transform_origin;
// FIXME: Support more overflow variations.
if (paintable_box().computed_values().overflow_x() == CSS::Overflow::Hidden && paintable_box().computed_values().overflow_y() == CSS::Overflow::Hidden) {
if (!paintable_box().absolute_border_box_rect().contains(transformed_position.x().value(), transformed_position.y().value()))
return {};
}
// NOTE: Hit testing basically happens in reverse painting order.
// https://www.w3.org/TR/CSS22/visuren.html#z-index
// 7. the child stacking contexts with positive stack levels (least positive first).
// NOTE: Hit testing follows reverse painting order, that's why the conditions here are reversed.
for (ssize_t i = m_children.size() - 1; i >= 0; --i) {
auto const& child = *m_children[i];
if (child.m_box->computed_values().z_index().value_or(0) <= 0)
break;
auto result = child.hit_test(transformed_position, type);
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
}
// 6. the child stacking contexts with stack level 0 and the positioned descendants with stack level 0.
Optional<HitTestResult> result;
for_each_in_subtree_of_type_within_same_stacking_context_in_reverse<PaintableBox>(paintable_box(), [&](PaintableBox const& paintable_box) {
// FIXME: Support more overflow variations.
if (paintable_box.computed_values().overflow_x() == CSS::Overflow::Hidden && paintable_box.computed_values().overflow_y() == CSS::Overflow::Hidden) {
if (!paintable_box.absolute_border_box_rect().contains(transformed_position.x().value(), transformed_position.y().value()))
return TraversalDecision::SkipChildrenAndContinue;
}
auto const& z_index = paintable_box.computed_values().z_index();
auto& layout_box = paintable_box.layout_box();
if (z_index.value_or(0) == 0 && layout_box.is_positioned() && !paintable_box.stacking_context()) {
auto candidate = paintable_box.hit_test(transformed_position, type);
if (candidate.has_value() && candidate->paintable->visible_for_hit_testing()) {
result = move(candidate);
return TraversalDecision::Break;
}
}
if (paintable_box.stacking_context()) {
if (z_index.value_or(0) == 0) {
auto candidate = paintable_box.stacking_context()->hit_test(transformed_position, type);
if (candidate.has_value() && candidate->paintable->visible_for_hit_testing()) {
result = move(candidate);
return TraversalDecision::Break;
}
}
}
return TraversalDecision::Continue;
});
if (result.has_value())
return result;
// 5. the in-flow, inline-level, non-positioned descendants, including inline tables and inline blocks.
if (m_box->children_are_inline() && is<Layout::BlockContainer>(*m_box)) {
auto result = paintable_box().hit_test(transformed_position, type);
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
}
// 4. the non-positioned floats.
for_each_in_subtree_of_type_within_same_stacking_context_in_reverse<PaintableBox>(paintable_box(), [&](PaintableBox const& paintable_box) {
// FIXME: Support more overflow variations.
if (paintable_box.computed_values().overflow_x() == CSS::Overflow::Hidden && paintable_box.computed_values().overflow_y() == CSS::Overflow::Hidden) {
if (!paintable_box.absolute_border_box_rect().contains(transformed_position.x().value(), transformed_position.y().value()))
return TraversalDecision::SkipChildrenAndContinue;
}
auto& layout_box = paintable_box.layout_box();
if (layout_box.is_floating()) {
if (auto candidate = paintable_box.hit_test(transformed_position, type); candidate.has_value()) {
result = move(candidate);
return TraversalDecision::Break;
}
}
return TraversalDecision::Continue;
});
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
// 3. the in-flow, non-inline-level, non-positioned descendants.
if (!m_box->children_are_inline()) {
for_each_in_subtree_of_type_within_same_stacking_context_in_reverse<PaintableBox>(paintable_box(), [&](PaintableBox const& paintable_box) {
// FIXME: Support more overflow variations.
if (paintable_box.computed_values().overflow_x() == CSS::Overflow::Hidden && paintable_box.computed_values().overflow_y() == CSS::Overflow::Hidden) {
if (!paintable_box.absolute_border_box_rect().contains(transformed_position.x().value(), transformed_position.y().value()))
return TraversalDecision::SkipChildrenAndContinue;
}
auto& layout_box = paintable_box.layout_box();
if (!layout_box.is_absolutely_positioned() && !layout_box.is_floating()) {
if (auto candidate = paintable_box.hit_test(transformed_position, type); candidate.has_value()) {
result = move(candidate);
return TraversalDecision::Break;
}
}
return TraversalDecision::Continue;
});
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
}
// 2. the child stacking contexts with negative stack levels (most negative first).
// NOTE: Hit testing follows reverse painting order, that's why the conditions here are reversed.
for (ssize_t i = m_children.size() - 1; i >= 0; --i) {
auto const& child = *m_children[i];
if (child.m_box->computed_values().z_index().value_or(0) >= 0)
break;
auto result = child.hit_test(transformed_position, type);
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
}
// 1. the background and borders of the element forming the stacking context.
if (paintable_box().absolute_border_box_rect().contains(transformed_position.x().value(), transformed_position.y().value())) {
return HitTestResult {
.paintable = const_cast<PaintableBox&>(paintable_box()),
};
}
return {};
}
void StackingContext::dump(int indent) const
{
StringBuilder builder;
for (int i = 0; i < indent; ++i)
builder.append(' ');
builder.appendff("SC for {} {} [children: {}] (z-index: ", m_box->debug_description(), paintable_box().absolute_rect(), m_children.size());
if (m_box->computed_values().z_index().has_value())
builder.appendff("{}", m_box->computed_values().z_index().value());
else
builder.append("auto"sv);
builder.append(')');
auto affine_transform = affine_transform_matrix();
if (!affine_transform.is_identity()) {
builder.appendff(", transform: {}", affine_transform);
}
dbgln("{}", builder.string_view());
for (auto& child : m_children)
child->dump(indent + 1);
}
}