ladybird/Tests/LibSQL/TestSqlBtreeIndex.cpp
Jan de Visser 85a84b0794 LibSQL: Introduce Serializer as a mediator between Heap and client code
Classes reading and writing to the data heap would communicate directly
with the Heap object, and transfer ByteBuffers back and forth with it.
This makes things like caching and locking hard. Therefore all data
persistence activity will be funneled through a Serializer object which
in turn submits it to the Heap.

Introducing this unfortunately resulted in a huge amount of churn, in
which a number of smaller refactorings got caught up as well.
2021-08-21 22:03:30 +02:00

317 lines
5.5 KiB
C++

/*
* Copyright (c) 2021, Jan de Visser <jan@de-visser.net>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <unistd.h>
#include <AK/ScopeGuard.h>
#include <LibSQL/BTree.h>
#include <LibSQL/Heap.h>
#include <LibSQL/Key.h>
#include <LibSQL/Meta.h>
#include <LibSQL/TupleDescriptor.h>
#include <LibSQL/Value.h>
#include <LibTest/TestCase.h>
constexpr static int keys[] = {
39,
87,
77,
42,
98,
40,
53,
8,
37,
12,
90,
72,
73,
11,
88,
22,
10,
82,
25,
61,
97,
18,
60,
68,
21,
3,
58,
29,
13,
17,
89,
81,
16,
64,
5,
41,
36,
91,
38,
24,
32,
50,
34,
94,
49,
47,
1,
6,
44,
76,
};
constexpr static u32 pointers[] = {
92,
4,
50,
47,
68,
73,
24,
28,
50,
93,
60,
36,
92,
72,
53,
26,
91,
84,
25,
43,
88,
12,
62,
35,
96,
27,
96,
27,
99,
30,
21,
89,
54,
60,
37,
68,
35,
55,
80,
2,
33,
26,
93,
70,
45,
44,
3,
66,
75,
4,
};
NonnullRefPtr<SQL::BTree> setup_btree(SQL::Serializer&);
void insert_and_get_to_and_from_btree(int);
void insert_into_and_scan_btree(int);
NonnullRefPtr<SQL::BTree> setup_btree(SQL::Serializer& serializer)
{
NonnullRefPtr<SQL::TupleDescriptor> tuple_descriptor = adopt_ref(*new SQL::TupleDescriptor);
tuple_descriptor->append({ "key_value", SQL::SQLType::Integer, SQL::Order::Ascending });
auto root_pointer = serializer.heap().user_value(0);
if (!root_pointer) {
root_pointer = serializer.heap().new_record_pointer();
serializer.heap().set_user_value(0, root_pointer);
}
auto btree = SQL::BTree::construct(serializer, tuple_descriptor, true, root_pointer);
btree->on_new_root = [&]() {
serializer.heap().set_user_value(0, btree->root());
};
return btree;
}
void insert_and_get_to_and_from_btree(int num_keys)
{
ScopeGuard guard([]() { unlink("/tmp/test.db"); });
{
auto heap = SQL::Heap::construct("/tmp/test.db");
SQL::Serializer serializer(heap);
auto btree = setup_btree(serializer);
for (auto ix = 0; ix < num_keys; ix++) {
SQL::Key k(btree->descriptor());
k[0] = keys[ix];
k.set_pointer(pointers[ix]);
btree->insert(k);
}
#ifdef LIST_TREE
btree->list_tree();
#endif
}
{
auto heap = SQL::Heap::construct("/tmp/test.db");
SQL::Serializer serializer(heap);
auto btree = setup_btree(serializer);
for (auto ix = 0; ix < num_keys; ix++) {
SQL::Key k(btree->descriptor());
k[0] = keys[ix];
auto pointer_opt = btree->get(k);
VERIFY(pointer_opt.has_value());
EXPECT_EQ(pointer_opt.value(), pointers[ix]);
}
}
}
void insert_into_and_scan_btree(int num_keys)
{
ScopeGuard guard([]() { unlink("/tmp/test.db"); });
{
auto heap = SQL::Heap::construct("/tmp/test.db");
SQL::Serializer serializer(heap);
auto btree = setup_btree(serializer);
for (auto ix = 0; ix < num_keys; ix++) {
SQL::Key k(btree->descriptor());
k[0] = keys[ix];
k.set_pointer(pointers[ix]);
btree->insert(k);
}
#ifdef LIST_TREE
btree->list_tree();
#endif
}
{
auto heap = SQL::Heap::construct("/tmp/test.db");
SQL::Serializer serializer(heap);
auto btree = setup_btree(serializer);
int count = 0;
SQL::Tuple prev;
for (auto iter = btree->begin(); !iter.is_end(); iter++, count++) {
auto key = (*iter);
if (prev.size()) {
EXPECT(prev < key);
}
auto key_value = (int)key[0];
for (auto ix = 0; ix < num_keys; ix++) {
if (keys[ix] == key_value) {
EXPECT_EQ(key.pointer(), pointers[ix]);
break;
}
}
prev = key;
}
EXPECT_EQ(count, num_keys);
}
}
TEST_CASE(btree_one_key)
{
insert_and_get_to_and_from_btree(1);
}
TEST_CASE(btree_four_keys)
{
insert_and_get_to_and_from_btree(4);
}
TEST_CASE(btree_five_keys)
{
insert_and_get_to_and_from_btree(5);
}
TEST_CASE(btree_10_keys)
{
insert_and_get_to_and_from_btree(10);
}
TEST_CASE(btree_13_keys)
{
insert_and_get_to_and_from_btree(13);
}
TEST_CASE(btree_20_keys)
{
insert_and_get_to_and_from_btree(20);
}
TEST_CASE(btree_25_keys)
{
insert_and_get_to_and_from_btree(25);
}
TEST_CASE(btree_30_keys)
{
insert_and_get_to_and_from_btree(30);
}
TEST_CASE(btree_35_keys)
{
insert_and_get_to_and_from_btree(35);
}
TEST_CASE(btree_40_keys)
{
insert_and_get_to_and_from_btree(40);
}
TEST_CASE(btree_45_keys)
{
insert_and_get_to_and_from_btree(45);
}
TEST_CASE(btree_50_keys)
{
insert_and_get_to_and_from_btree(50);
}
TEST_CASE(btree_scan_one_key)
{
insert_into_and_scan_btree(1);
}
TEST_CASE(btree_scan_four_keys)
{
insert_into_and_scan_btree(4);
}
TEST_CASE(btree_scan_five_keys)
{
insert_into_and_scan_btree(5);
}
TEST_CASE(btree_scan_10_keys)
{
insert_into_and_scan_btree(10);
}
TEST_CASE(btree_scan_15_keys)
{
insert_into_and_scan_btree(15);
}
TEST_CASE(btree_scan_30_keys)
{
insert_into_and_scan_btree(15);
}
TEST_CASE(btree_scan_50_keys)
{
insert_into_and_scan_btree(50);
}