ladybird/Userland/Libraries/LibC/time.cpp
Daniel Bertalan f95a11a7da LibC: Don't delete null check in gettimeofday
The `nonnull` attribute may delete null checks in the generated code, as
per the [GCC documentation]:

> The compiler may also perform optimizations based on the knowledge
> that nonnul parameters cannot be null. This can currently not be
> disabled other than by removing the nonnull attribute.

Disassembling the function as compiled by GCC, we can see that there is
no branch based on if `tv` is null.  This means that `gettimeofday`
would produce UB if passed a null parameter, even if we wanted to
predictably return an error.  Clang refuses to compile this due to a
`pointer-bool-conversion` warning.

In this commit, `settimeofday` is changed as well to match
`gettimeofday`'s null argument handling.

[GCC documentation]:
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-nonnull-function-attribute
2021-08-12 21:10:44 +02:00

438 lines
13 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <Kernel/API/TimePage.h>
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <sys/times.h>
#include <syscall.h>
#include <time.h>
#include <utime.h>
extern "C" {
time_t time(time_t* tloc)
{
struct timeval tv;
struct timezone tz;
if (gettimeofday(&tv, &tz) < 0)
return (time_t)-1;
if (tloc)
*tloc = tv.tv_sec;
return tv.tv_sec;
}
int adjtime(const struct timeval* delta, struct timeval* old_delta)
{
int rc = syscall(SC_adjtime, delta, old_delta);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
int gettimeofday(struct timeval* __restrict__ tv, void* __restrict__)
{
if (!tv) {
errno = EFAULT;
return -1;
}
struct timespec ts = {};
if (clock_gettime(CLOCK_REALTIME_COARSE, &ts) < 0)
return -1;
TIMESPEC_TO_TIMEVAL(tv, &ts);
return 0;
}
int settimeofday(struct timeval* __restrict__ tv, void* __restrict__)
{
if (!tv) {
errno = EFAULT;
return -1;
}
timespec ts;
TIMEVAL_TO_TIMESPEC(tv, &ts);
return clock_settime(CLOCK_REALTIME, &ts);
}
int utimes(const char* pathname, const struct timeval times[2])
{
if (!times) {
return utime(pathname, nullptr);
}
// FIXME: implement support for tv_usec in the utime (or a new) syscall
utimbuf buf = { times[0].tv_sec, times[1].tv_sec };
return utime(pathname, &buf);
}
char* ctime(const time_t* t)
{
return asctime(localtime(t));
}
char* ctime_r(const time_t* t, char* buf)
{
struct tm tm_buf;
return asctime_r(localtime_r(t, &tm_buf), buf);
}
static const int __seconds_per_day = 60 * 60 * 24;
static void time_to_tm(struct tm* tm, time_t t)
{
int year = 1970;
for (; t >= days_in_year(year) * __seconds_per_day; ++year)
t -= days_in_year(year) * __seconds_per_day;
for (; t < 0; --year)
t += days_in_year(year - 1) * __seconds_per_day;
tm->tm_year = year - 1900;
VERIFY(t >= 0);
int days = t / __seconds_per_day;
tm->tm_yday = days;
int remaining = t % __seconds_per_day;
tm->tm_sec = remaining % 60;
remaining /= 60;
tm->tm_min = remaining % 60;
tm->tm_hour = remaining / 60;
int month;
for (month = 1; month < 12 && days >= days_in_month(year, month); ++month)
days -= days_in_month(year, month);
tm->tm_mday = days + 1;
tm->tm_wday = day_of_week(year, month, tm->tm_mday);
tm->tm_mon = month - 1;
}
static time_t tm_to_time(struct tm* tm, long timezone_adjust_seconds)
{
// "The original values of the tm_wday and tm_yday components of the structure are ignored,
// and the original values of the other components are not restricted to the ranges described in <time.h>.
// [...]
// Upon successful completion, the values of the tm_wday and tm_yday components of the structure shall be set appropriately,
// and the other components are set to represent the specified time since the Epoch,
// but with their values forced to the ranges indicated in the <time.h> entry;
// the final value of tm_mday shall not be set until tm_mon and tm_year are determined."
// FIXME: Handle tm_isdst eventually.
tm->tm_year += tm->tm_mon / 12;
tm->tm_mon %= 12;
if (tm->tm_mon < 0) {
tm->tm_year--;
tm->tm_mon += 12;
}
tm->tm_yday = day_of_year(1900 + tm->tm_year, tm->tm_mon + 1, tm->tm_mday);
time_t days_since_epoch = years_to_days_since_epoch(1900 + tm->tm_year) + tm->tm_yday;
auto timestamp = ((days_since_epoch * 24 + tm->tm_hour) * 60 + tm->tm_min) * 60 + tm->tm_sec + timezone_adjust_seconds;
time_to_tm(tm, timestamp);
return timestamp;
}
time_t mktime(struct tm* tm)
{
return tm_to_time(tm, timezone);
}
struct tm* localtime(const time_t* t)
{
static struct tm tm_buf;
return localtime_r(t, &tm_buf);
}
struct tm* localtime_r(const time_t* t, struct tm* tm)
{
if (!t)
return nullptr;
time_to_tm(tm, (*t) - timezone);
return tm;
}
time_t timegm(struct tm* tm)
{
return tm_to_time(tm, 0);
}
struct tm* gmtime(const time_t* t)
{
static struct tm tm_buf;
return gmtime_r(t, &tm_buf);
}
struct tm* gmtime_r(const time_t* t, struct tm* tm)
{
if (!t)
return nullptr;
time_to_tm(tm, *t);
return tm;
}
char* asctime(const struct tm* tm)
{
static char buffer[69];
return asctime_r(tm, buffer);
}
char* asctime_r(const struct tm* tm, char* buffer)
{
// Spec states buffer must be at least 26 bytes.
constexpr size_t assumed_len = 26;
size_t filled_size = strftime(buffer, assumed_len, "%a %b %e %T %Y\n", tm);
// Verify that the buffer was large enough.
VERIFY(filled_size != 0);
return buffer;
}
//FIXME: Some formats are not supported.
size_t strftime(char* destination, size_t max_size, const char* format, const struct tm* tm)
{
const char wday_short_names[7][4] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
};
const char wday_long_names[7][10] = {
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"
};
const char mon_short_names[12][4] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
const char mon_long_names[12][10] = {
"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"
};
StringBuilder builder { max_size };
const int format_len = strlen(format);
for (int i = 0; i < format_len; ++i) {
if (format[i] != '%') {
builder.append(format[i]);
} else {
if (++i >= format_len)
return 0;
switch (format[i]) {
case 'a':
builder.append(wday_short_names[tm->tm_wday]);
break;
case 'A':
builder.append(wday_long_names[tm->tm_wday]);
break;
case 'b':
builder.append(mon_short_names[tm->tm_mon]);
break;
case 'B':
builder.append(mon_long_names[tm->tm_mon]);
break;
case 'C':
builder.appendff("{:02}", (tm->tm_year + 1900) / 100);
break;
case 'd':
builder.appendff("{:02}", tm->tm_mday);
break;
case 'D':
builder.appendff("{:02}/{:02}/{:02}", tm->tm_mon + 1, tm->tm_mday, (tm->tm_year + 1900) % 100);
break;
case 'e':
builder.appendff("{:2}", tm->tm_mday);
break;
case 'h':
builder.append(mon_short_names[tm->tm_mon]);
break;
case 'H':
builder.appendff("{:02}", tm->tm_hour);
break;
case 'I':
builder.appendff("{:02}", tm->tm_hour % 12);
break;
case 'j':
builder.appendff("{:03}", tm->tm_yday + 1);
break;
case 'm':
builder.appendff("{:02}", tm->tm_mon + 1);
break;
case 'M':
builder.appendff("{:02}", tm->tm_min);
break;
case 'n':
builder.append('\n');
break;
case 'p':
builder.append(tm->tm_hour < 12 ? "a.m." : "p.m.");
break;
case 'r':
builder.appendff("{:02}:{:02}:{:02} {}", tm->tm_hour % 12, tm->tm_min, tm->tm_sec, tm->tm_hour < 12 ? "a.m." : "p.m.");
break;
case 'R':
builder.appendff("{:02}:{:02}", tm->tm_hour, tm->tm_min);
break;
case 'S':
builder.appendff("{:02}", tm->tm_sec);
break;
case 't':
builder.append('\t');
break;
case 'T':
builder.appendff("{:02}:{:02}:{:02}", tm->tm_hour, tm->tm_min, tm->tm_sec);
break;
case 'u':
builder.appendff("{}", tm->tm_wday ? tm->tm_wday : 7);
break;
case 'U': {
const int wday_of_year_beginning = (tm->tm_wday + 6 * tm->tm_yday) % 7;
const int week_number = (tm->tm_yday + wday_of_year_beginning) / 7;
builder.appendff("{:02}", week_number);
break;
}
case 'V': {
const int wday_of_year_beginning = (tm->tm_wday + 6 + 6 * tm->tm_yday) % 7;
int week_number = (tm->tm_yday + wday_of_year_beginning) / 7 + 1;
if (wday_of_year_beginning > 3) {
if (tm->tm_yday >= 7 - wday_of_year_beginning)
--week_number;
else {
const int days_of_last_year = days_in_year(tm->tm_year + 1900 - 1);
const int wday_of_last_year_beginning = (wday_of_year_beginning + 6 * days_of_last_year) % 7;
week_number = (days_of_last_year + wday_of_last_year_beginning) / 7 + 1;
if (wday_of_last_year_beginning > 3)
--week_number;
}
}
builder.appendff("{:02}", week_number);
break;
}
case 'w':
builder.appendff("{}", tm->tm_wday);
break;
case 'W': {
const int wday_of_year_beginning = (tm->tm_wday + 6 + 6 * tm->tm_yday) % 7;
const int week_number = (tm->tm_yday + wday_of_year_beginning) / 7;
builder.appendff("{:02}", week_number);
break;
}
case 'y':
builder.appendff("{:02}", (tm->tm_year + 1900) % 100);
break;
case 'Y':
builder.appendff("{}", tm->tm_year + 1900);
break;
case '%':
builder.append('%');
break;
default:
return 0;
}
}
if (builder.length() + 1 > max_size)
return 0;
}
auto str = builder.build();
bool fits = str.copy_characters_to_buffer(destination, max_size);
return fits ? str.length() : 0;
}
long timezone;
long altzone;
char* tzname[2];
int daylight;
constexpr const char* __utc = "UTC";
void tzset()
{
// FIXME: Here we pretend we are in UTC+0.
timezone = 0;
daylight = 0;
tzname[0] = const_cast<char*>(__utc);
tzname[1] = const_cast<char*>(__utc);
}
clock_t clock()
{
struct tms tms;
times(&tms);
return tms.tms_utime + tms.tms_stime;
}
static Kernel::TimePage* get_kernel_time_page()
{
static Kernel::TimePage* s_kernel_time_page;
// FIXME: Thread safety
if (!s_kernel_time_page) {
auto rc = syscall(SC_map_time_page);
if ((int)rc < 0 && (int)rc > -EMAXERRNO) {
errno = -(int)rc;
return nullptr;
}
s_kernel_time_page = (Kernel::TimePage*)rc;
}
return s_kernel_time_page;
}
int clock_gettime(clockid_t clock_id, struct timespec* ts)
{
if (Kernel::time_page_supports(clock_id)) {
if (!ts) {
errno = EFAULT;
return -1;
}
if (auto* kernel_time_page = get_kernel_time_page()) {
u32 update_iteration;
do {
update_iteration = AK::atomic_load(&kernel_time_page->update1, AK::memory_order_acquire);
*ts = kernel_time_page->clocks[clock_id];
} while (update_iteration != AK::atomic_load(&kernel_time_page->update2, AK::memory_order_acquire));
return 0;
}
}
int rc = syscall(SC_clock_gettime, clock_id, ts);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
int clock_settime(clockid_t clock_id, struct timespec* ts)
{
int rc = syscall(SC_clock_settime, clock_id, ts);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
int clock_nanosleep(clockid_t clock_id, int flags, const struct timespec* requested_sleep, struct timespec* remaining_sleep)
{
Syscall::SC_clock_nanosleep_params params { clock_id, flags, requested_sleep, remaining_sleep };
int rc = syscall(SC_clock_nanosleep, &params);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
int nanosleep(const struct timespec* requested_sleep, struct timespec* remaining_sleep)
{
return clock_nanosleep(CLOCK_REALTIME, 0, requested_sleep, remaining_sleep);
}
int clock_getres(clockid_t, struct timespec*)
{
dbgln("FIXME: Implement clock_getres()");
auto rc = -ENOSYS;
__RETURN_WITH_ERRNO(rc, rc, -1);
}
double difftime(time_t t1, time_t t0)
{
return (double)(t1 - t0);
}
}