ladybird/Userland/Libraries/LibSoftGPU/Device.cpp
Lenny Maiorani 759857b597 LibSoftGPU: Avoid copying data when doing triangle rasterization
Several large-ish objects shouldn't be copied to the stack when a
reference will do.
2022-03-18 23:41:06 +00:00

1305 lines
56 KiB
C++

/*
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
* Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Math.h>
#include <AK/NumericLimits.h>
#include <AK/SIMDExtras.h>
#include <AK/SIMDMath.h>
#include <LibCore/ElapsedTimer.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Vector2.h>
#include <LibGfx/Vector3.h>
#include <LibSoftGPU/Config.h>
#include <LibSoftGPU/Device.h>
#include <LibSoftGPU/PixelQuad.h>
#include <LibSoftGPU/SIMD.h>
#include <math.h>
namespace SoftGPU {
static long long g_num_rasterized_triangles;
static long long g_num_pixels;
static long long g_num_pixels_shaded;
static long long g_num_pixels_blended;
static long long g_num_sampler_calls;
static long long g_num_stencil_writes;
static long long g_num_quads;
using AK::SIMD::any;
using AK::SIMD::exp;
using AK::SIMD::expand4;
using AK::SIMD::f32x4;
using AK::SIMD::i32x4;
using AK::SIMD::load4_masked;
using AK::SIMD::maskbits;
using AK::SIMD::maskcount;
using AK::SIMD::none;
using AK::SIMD::store4_masked;
using AK::SIMD::to_f32x4;
using AK::SIMD::to_u32x4;
using AK::SIMD::u32x4;
constexpr static float edge_function(const FloatVector2& a, const FloatVector2& b, const FloatVector2& c)
{
return (c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x());
}
constexpr static f32x4 edge_function4(const FloatVector2& a, const FloatVector2& b, const Vector2<f32x4>& c)
{
return (c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x());
}
template<typename T, typename U>
constexpr static auto interpolate(const T& v0, const T& v1, const T& v2, const Vector3<U>& barycentric_coords)
{
return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
}
static ColorType to_bgra32(FloatVector4 const& color)
{
auto clamped = color.clamped(0.0f, 1.0f);
auto r = static_cast<u8>(clamped.x() * 255);
auto g = static_cast<u8>(clamped.y() * 255);
auto b = static_cast<u8>(clamped.z() * 255);
auto a = static_cast<u8>(clamped.w() * 255);
return a << 24 | r << 16 | g << 8 | b;
}
ALWAYS_INLINE static u32x4 to_bgra32(Vector4<f32x4> const& v)
{
auto clamped = v.clamped(expand4(0.0f), expand4(1.0f));
auto r = to_u32x4(clamped.x() * 255);
auto g = to_u32x4(clamped.y() * 255);
auto b = to_u32x4(clamped.z() * 255);
auto a = to_u32x4(clamped.w() * 255);
return a << 24 | r << 16 | g << 8 | b;
}
static Vector4<f32x4> to_vec4(u32x4 bgra)
{
auto constexpr one_over_255 = expand4(1.0f / 255);
return {
to_f32x4((bgra >> 16) & 0xff) * one_over_255,
to_f32x4((bgra >> 8) & 0xff) * one_over_255,
to_f32x4(bgra & 0xff) * one_over_255,
to_f32x4((bgra >> 24) & 0xff) * one_over_255,
};
}
void Device::setup_blend_factors()
{
m_alpha_blend_factors = {};
switch (m_options.blend_source_factor) {
case BlendFactor::Zero:
break;
case BlendFactor::One:
m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
break;
case BlendFactor::SrcColor:
m_alpha_blend_factors.src_factor_src_color = 1;
break;
case BlendFactor::OneMinusSrcColor:
m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
m_alpha_blend_factors.src_factor_src_color = -1;
break;
case BlendFactor::SrcAlpha:
m_alpha_blend_factors.src_factor_src_alpha = 1;
break;
case BlendFactor::OneMinusSrcAlpha:
m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
m_alpha_blend_factors.src_factor_src_alpha = -1;
break;
case BlendFactor::DstAlpha:
m_alpha_blend_factors.src_factor_dst_alpha = 1;
break;
case BlendFactor::OneMinusDstAlpha:
m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
m_alpha_blend_factors.src_factor_dst_alpha = -1;
break;
case BlendFactor::DstColor:
m_alpha_blend_factors.src_factor_dst_color = 1;
break;
case BlendFactor::OneMinusDstColor:
m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
m_alpha_blend_factors.src_factor_dst_color = -1;
break;
case BlendFactor::SrcAlphaSaturate:
default:
VERIFY_NOT_REACHED();
}
switch (m_options.blend_destination_factor) {
case BlendFactor::Zero:
break;
case BlendFactor::One:
m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
break;
case BlendFactor::SrcColor:
m_alpha_blend_factors.dst_factor_src_color = 1;
break;
case BlendFactor::OneMinusSrcColor:
m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
m_alpha_blend_factors.dst_factor_src_color = -1;
break;
case BlendFactor::SrcAlpha:
m_alpha_blend_factors.dst_factor_src_alpha = 1;
break;
case BlendFactor::OneMinusSrcAlpha:
m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
m_alpha_blend_factors.dst_factor_src_alpha = -1;
break;
case BlendFactor::DstAlpha:
m_alpha_blend_factors.dst_factor_dst_alpha = 1;
break;
case BlendFactor::OneMinusDstAlpha:
m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
m_alpha_blend_factors.dst_factor_dst_alpha = -1;
break;
case BlendFactor::DstColor:
m_alpha_blend_factors.dst_factor_dst_color = 1;
break;
case BlendFactor::OneMinusDstColor:
m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
m_alpha_blend_factors.dst_factor_dst_color = -1;
break;
case BlendFactor::SrcAlphaSaturate:
default:
VERIFY_NOT_REACHED();
}
}
void Device::rasterize_triangle(const Triangle& triangle)
{
INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1);
// Return if alpha testing is a no-op
if (m_options.enable_alpha_test && m_options.alpha_test_func == AlphaTestFunction::Never)
return;
// Vertices
Vertex const& vertex0 = triangle.vertices[0];
Vertex const& vertex1 = triangle.vertices[1];
Vertex const& vertex2 = triangle.vertices[2];
// Calculate area of the triangle for later tests
FloatVector2 const v0 = vertex0.window_coordinates.xy();
FloatVector2 const v1 = vertex1.window_coordinates.xy();
FloatVector2 const v2 = vertex2.window_coordinates.xy();
auto const area = edge_function(v0, v1, v2);
auto const one_over_area = 1.0f / area;
auto render_bounds = m_frame_buffer->rect();
if (m_options.scissor_enabled)
render_bounds.intersect(m_options.scissor_box);
// This function calculates the 3 edge values for the pixel relative to the triangle.
auto calculate_edge_values4 = [v0, v1, v2](Vector2<f32x4> const& p) -> Vector3<f32x4> {
return {
edge_function4(v1, v2, p),
edge_function4(v2, v0, p),
edge_function4(v0, v1, p),
};
};
// Zero is used in testing against edge values below, applying the "top-left rule". If a pixel
// lies exactly on an edge shared by two triangles, we only render that pixel if the edge in
// question is a "top" or "left" edge. We can detect those easily by testing for Y2 <= Y1,
// since we know our vertices are in CCW order. By changing a float epsilon to 0, we
// effectively change the comparisons against the edge values below from "> 0" into ">= 0".
constexpr auto epsilon = NumericLimits<float>::epsilon();
FloatVector3 zero { epsilon, epsilon, epsilon };
if (v2.y() <= v1.y())
zero.set_x(0.f);
if (v0.y() <= v2.y())
zero.set_y(0.f);
if (v1.y() <= v0.y())
zero.set_z(0.f);
// This function tests whether a point as identified by its 3 edge values lies within the triangle
auto test_point4 = [zero](Vector3<f32x4> const& edges) -> i32x4 {
return edges.x() >= zero.x()
&& edges.y() >= zero.y()
&& edges.z() >= zero.z();
};
// Calculate block-based bounds
// clang-format off
int const bx0 = max(render_bounds.left(), min(min(v0.x(), v1.x()), v2.x())) & ~1;
int const bx1 = (min(render_bounds.right(), max(max(v0.x(), v1.x()), v2.x())) & ~1) + 2;
int const by0 = max(render_bounds.top(), min(min(v0.y(), v1.y()), v2.y())) & ~1;
int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y())) & ~1) + 2;
// clang-format on
// Calculate depth of fragment for fog;
// OpenGL 1.5 spec chapter 3.10: "An implementation may choose to approximate the
// eye-coordinate distance from the eye to each fragment center by |Ze|."
f32x4 vertex0_fog_depth;
f32x4 vertex1_fog_depth;
f32x4 vertex2_fog_depth;
if (m_options.fog_enabled) {
vertex0_fog_depth = expand4(fabsf(vertex0.eye_coordinates.z()));
vertex1_fog_depth = expand4(fabsf(vertex1.eye_coordinates.z()));
vertex2_fog_depth = expand4(fabsf(vertex2.eye_coordinates.z()));
}
float const render_bounds_left = render_bounds.left();
float const render_bounds_right = render_bounds.right();
float const render_bounds_top = render_bounds.top();
float const render_bounds_bottom = render_bounds.bottom();
auto const half_pixel_offset = Vector2<f32x4> { expand4(.5f), expand4(.5f) };
auto color_buffer = m_frame_buffer->color_buffer();
auto depth_buffer = m_frame_buffer->depth_buffer();
auto stencil_buffer = m_frame_buffer->stencil_buffer();
// Stencil configuration and writing
auto const& stencil_configuration = m_stencil_configuration[Face::Front];
auto const stencil_reference_value = stencil_configuration.reference_value & stencil_configuration.test_mask;
auto write_to_stencil = [](StencilType* stencil_ptrs[4], i32x4 stencil_value, StencilOperation op, StencilType reference_value, StencilType write_mask, i32x4 pixel_mask) {
if (write_mask == 0 || op == StencilOperation::Keep)
return;
switch (op) {
case StencilOperation::Decrement:
stencil_value = (stencil_value & ~write_mask) | (max(stencil_value - 1, expand4(0)) & write_mask);
break;
case StencilOperation::DecrementWrap:
stencil_value = (stencil_value & ~write_mask) | (((stencil_value - 1) & 0xFF) & write_mask);
break;
case StencilOperation::Increment:
stencil_value = (stencil_value & ~write_mask) | (min(stencil_value + 1, expand4(0xFF)) & write_mask);
break;
case StencilOperation::IncrementWrap:
stencil_value = (stencil_value & ~write_mask) | (((stencil_value + 1) & 0xFF) & write_mask);
break;
case StencilOperation::Invert:
stencil_value ^= write_mask;
break;
case StencilOperation::Replace:
stencil_value = (stencil_value & ~write_mask) | (reference_value & write_mask);
break;
case StencilOperation::Zero:
stencil_value &= ~write_mask;
break;
default:
VERIFY_NOT_REACHED();
}
INCREASE_STATISTICS_COUNTER(g_num_stencil_writes, maskcount(pixel_mask));
store4_masked(stencil_value, stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], pixel_mask);
};
// Iterate over all blocks within the bounds of the triangle
for (int by = by0; by < by1; by += 2) {
auto const f_by = static_cast<float>(by);
for (int bx = bx0; bx < bx1; bx += 2) {
PixelQuad quad;
auto const f_bx = static_cast<float>(bx);
quad.screen_coordinates = {
f32x4 { f_bx, f_bx + 1, f_bx, f_bx + 1 },
f32x4 { f_by, f_by, f_by + 1, f_by + 1 },
};
auto edge_values = calculate_edge_values4(quad.screen_coordinates + half_pixel_offset);
// Generate triangle coverage mask
quad.mask = test_point4(edge_values);
// Test quad against intersection of render target size and scissor rect
quad.mask &= quad.screen_coordinates.x() >= render_bounds_left
&& quad.screen_coordinates.x() <= render_bounds_right
&& quad.screen_coordinates.y() >= render_bounds_top
&& quad.screen_coordinates.y() <= render_bounds_bottom;
if (none(quad.mask))
continue;
INCREASE_STATISTICS_COUNTER(g_num_quads, 1);
INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask));
int coverage_bits = maskbits(quad.mask);
// Stencil testing
StencilType* stencil_ptrs[4];
i32x4 stencil_value;
if (m_options.enable_stencil_test) {
stencil_ptrs[0] = coverage_bits & 1 ? &stencil_buffer->scanline(by)[bx] : nullptr;
stencil_ptrs[1] = coverage_bits & 2 ? &stencil_buffer->scanline(by)[bx + 1] : nullptr;
stencil_ptrs[2] = coverage_bits & 4 ? &stencil_buffer->scanline(by + 1)[bx] : nullptr;
stencil_ptrs[3] = coverage_bits & 8 ? &stencil_buffer->scanline(by + 1)[bx + 1] : nullptr;
stencil_value = load4_masked(stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], quad.mask);
stencil_value &= stencil_configuration.test_mask;
i32x4 stencil_test_passed;
switch (stencil_configuration.test_function) {
case StencilTestFunction::Always:
stencil_test_passed = expand4(~0);
break;
case StencilTestFunction::Equal:
stencil_test_passed = stencil_value == stencil_reference_value;
break;
case StencilTestFunction::Greater:
stencil_test_passed = stencil_value > stencil_reference_value;
break;
case StencilTestFunction::GreaterOrEqual:
stencil_test_passed = stencil_value >= stencil_reference_value;
break;
case StencilTestFunction::Less:
stencil_test_passed = stencil_value < stencil_reference_value;
break;
case StencilTestFunction::LessOrEqual:
stencil_test_passed = stencil_value <= stencil_reference_value;
break;
case StencilTestFunction::Never:
stencil_test_passed = expand4(0);
break;
case StencilTestFunction::NotEqual:
stencil_test_passed = stencil_value != stencil_reference_value;
break;
default:
VERIFY_NOT_REACHED();
}
// Update stencil buffer for pixels that failed the stencil test
write_to_stencil(
stencil_ptrs,
stencil_value,
stencil_configuration.on_stencil_test_fail,
stencil_reference_value,
stencil_configuration.write_mask,
quad.mask & ~stencil_test_passed);
// Update coverage mask + early quad rejection
quad.mask &= stencil_test_passed;
if (none(quad.mask))
continue;
}
// Calculate barycentric coordinates from previously calculated edge values
quad.barycentrics = edge_values * one_over_area;
// Depth testing
DepthType* depth_ptrs[4] = {
coverage_bits & 1 ? &depth_buffer->scanline(by)[bx] : nullptr,
coverage_bits & 2 ? &depth_buffer->scanline(by)[bx + 1] : nullptr,
coverage_bits & 4 ? &depth_buffer->scanline(by + 1)[bx] : nullptr,
coverage_bits & 8 ? &depth_buffer->scanline(by + 1)[bx + 1] : nullptr,
};
if (m_options.enable_depth_test) {
auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
quad.depth = interpolate(vertex0.window_coordinates.z(), vertex1.window_coordinates.z(), vertex2.window_coordinates.z(), quad.barycentrics);
// FIXME: Also apply depth_offset_factor which depends on the depth gradient
if (m_options.depth_offset_enabled)
quad.depth += m_options.depth_offset_constant * NumericLimits<float>::epsilon();
i32x4 depth_test_passed;
switch (m_options.depth_func) {
case DepthTestFunction::Always:
depth_test_passed = expand4(~0);
break;
case DepthTestFunction::Never:
depth_test_passed = expand4(0);
break;
case DepthTestFunction::Greater:
depth_test_passed = quad.depth > depth;
break;
case DepthTestFunction::GreaterOrEqual:
depth_test_passed = quad.depth >= depth;
break;
case DepthTestFunction::NotEqual:
#ifdef __SSE__
depth_test_passed = quad.depth != depth;
#else
depth_test_passed = i32x4 {
bit_cast<u32>(quad.depth[0]) != bit_cast<u32>(depth[0]) ? -1 : 0,
bit_cast<u32>(quad.depth[1]) != bit_cast<u32>(depth[1]) ? -1 : 0,
bit_cast<u32>(quad.depth[2]) != bit_cast<u32>(depth[2]) ? -1 : 0,
bit_cast<u32>(quad.depth[3]) != bit_cast<u32>(depth[3]) ? -1 : 0,
};
#endif
break;
case DepthTestFunction::Equal:
#ifdef __SSE__
depth_test_passed = quad.depth == depth;
#else
//
// This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
// compiled for the i386 target. When we calculate our depth value to be stored in the buffer,
// it is an 80-bit x87 floating point number, however, when stored into the depth buffer, this is
// truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
// used here the comparison fails.
// This could be solved by using a `long double` for the depth buffer, however this would take
// up significantly more space and is completely overkill for a depth buffer. As such, comparing
// the first 32-bits of this depth value is "good enough" that if we get a hit on it being
// equal, we can pretty much guarantee that it's actually equal.
//
depth_test_passed = i32x4 {
bit_cast<u32>(quad.depth[0]) == bit_cast<u32>(depth[0]) ? -1 : 0,
bit_cast<u32>(quad.depth[1]) == bit_cast<u32>(depth[1]) ? -1 : 0,
bit_cast<u32>(quad.depth[2]) == bit_cast<u32>(depth[2]) ? -1 : 0,
bit_cast<u32>(quad.depth[3]) == bit_cast<u32>(depth[3]) ? -1 : 0,
};
#endif
break;
case DepthTestFunction::LessOrEqual:
depth_test_passed = quad.depth <= depth;
break;
case DepthTestFunction::Less:
depth_test_passed = quad.depth < depth;
break;
default:
VERIFY_NOT_REACHED();
}
// Update stencil buffer for pixels that failed the depth test
if (m_options.enable_stencil_test) {
write_to_stencil(
stencil_ptrs,
stencil_value,
stencil_configuration.on_depth_test_fail,
stencil_reference_value,
stencil_configuration.write_mask,
quad.mask & ~depth_test_passed);
}
// Update coverage mask + early quad rejection
quad.mask &= depth_test_passed;
if (none(quad.mask))
continue;
}
// Update stencil buffer for passed pixels
if (m_options.enable_stencil_test) {
write_to_stencil(
stencil_ptrs,
stencil_value,
stencil_configuration.on_pass,
stencil_reference_value,
stencil_configuration.write_mask,
quad.mask);
}
INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask));
// Draw the pixels according to the previously generated mask
auto const w_coordinates = Vector3<f32x4> {
expand4(vertex0.window_coordinates.w()),
expand4(vertex1.window_coordinates.w()),
expand4(vertex2.window_coordinates.w()),
};
auto const interpolated_reciprocal_w = interpolate(w_coordinates.x(), w_coordinates.y(), w_coordinates.z(), quad.barycentrics);
quad.barycentrics = quad.barycentrics * w_coordinates / interpolated_reciprocal_w;
// FIXME: make this more generic. We want to interpolate more than just color and uv
if (m_options.shade_smooth)
quad.vertex_color = interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics);
else
quad.vertex_color = expand4(vertex0.color);
for (size_t i = 0; i < NUM_SAMPLERS; ++i)
quad.texture_coordinates[i] = interpolate(expand4(vertex0.tex_coords[i]), expand4(vertex1.tex_coords[i]), expand4(vertex2.tex_coords[i]), quad.barycentrics);
if (m_options.fog_enabled)
quad.fog_depth = interpolate(vertex0_fog_depth, vertex1_fog_depth, vertex2_fog_depth, quad.barycentrics);
shade_fragments(quad);
if (m_options.enable_alpha_test && m_options.alpha_test_func != AlphaTestFunction::Always && !test_alpha(quad))
continue;
// Write to depth buffer
if (m_options.enable_depth_test && m_options.enable_depth_write)
store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
// We will not update the color buffer at all
if ((m_options.color_mask == 0) || !m_options.enable_color_write)
continue;
ColorType* color_ptrs[4] = {
coverage_bits & 1 ? &color_buffer->scanline(by)[bx] : nullptr,
coverage_bits & 2 ? &color_buffer->scanline(by)[bx + 1] : nullptr,
coverage_bits & 4 ? &color_buffer->scanline(by + 1)[bx] : nullptr,
coverage_bits & 8 ? &color_buffer->scanline(by + 1)[bx + 1] : nullptr,
};
u32x4 dst_u32;
if (m_options.enable_blending || m_options.color_mask != 0xffffffff)
dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
if (m_options.enable_blending) {
INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask));
// Blend color values from pixel_staging into color_buffer
Vector4<f32x4> const& src = quad.out_color;
auto dst = to_vec4(dst_u32);
auto src_factor = expand4(m_alpha_blend_factors.src_constant)
+ src * m_alpha_blend_factors.src_factor_src_color
+ Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.src_factor_src_alpha
+ dst * m_alpha_blend_factors.src_factor_dst_color
+ Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.src_factor_dst_alpha;
auto dst_factor = expand4(m_alpha_blend_factors.dst_constant)
+ src * m_alpha_blend_factors.dst_factor_src_color
+ Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.dst_factor_src_alpha
+ dst * m_alpha_blend_factors.dst_factor_dst_color
+ Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.dst_factor_dst_alpha;
quad.out_color = src * src_factor + dst * dst_factor;
}
if (m_options.color_mask == 0xffffffff)
store4_masked(to_bgra32(quad.out_color), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
else
store4_masked((to_bgra32(quad.out_color) & m_options.color_mask) | (dst_u32 & ~m_options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
}
}
}
Device::Device(Gfx::IntSize const& size)
: m_frame_buffer(FrameBuffer<ColorType, DepthType, StencilType>::try_create(size).release_value_but_fixme_should_propagate_errors())
{
m_options.scissor_box = m_frame_buffer->rect();
m_options.viewport = m_frame_buffer->rect();
}
DeviceInfo Device::info() const
{
return {
.vendor_name = "SerenityOS",
.device_name = "SoftGPU",
.num_texture_units = NUM_SAMPLERS,
.num_lights = NUM_LIGHTS,
.stencil_bits = sizeof(StencilType) * 8,
.supports_npot_textures = true,
};
}
static void generate_texture_coordinates(Vertex& vertex, RasterizerOptions const& options)
{
auto generate_coordinate = [&](size_t texcoord_index, size_t config_index) -> float {
auto mode = options.texcoord_generation_config[texcoord_index][config_index].mode;
switch (mode) {
case TexCoordGenerationMode::ObjectLinear: {
auto coefficients = options.texcoord_generation_config[texcoord_index][config_index].coefficients;
return coefficients.dot(vertex.position);
}
case TexCoordGenerationMode::EyeLinear: {
auto coefficients = options.texcoord_generation_config[texcoord_index][config_index].coefficients;
return coefficients.dot(vertex.eye_coordinates);
}
case TexCoordGenerationMode::SphereMap: {
auto const eye_unit = vertex.eye_coordinates.normalized();
FloatVector3 const eye_unit_xyz = eye_unit.xyz();
auto const normal = vertex.normal;
auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
reflection.set_z(reflection.z() + 1);
auto const reflection_value = reflection[config_index];
return reflection_value / (2 * reflection.length()) + 0.5f;
}
case TexCoordGenerationMode::ReflectionMap: {
auto const eye_unit = vertex.eye_coordinates.normalized();
FloatVector3 const eye_unit_xyz = eye_unit.xyz();
auto const normal = vertex.normal;
auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
return reflection[config_index];
}
case TexCoordGenerationMode::NormalMap: {
return vertex.normal[config_index];
}
default:
VERIFY_NOT_REACHED();
}
};
for (size_t i = 0; i < vertex.tex_coords.size(); ++i) {
auto& tex_coord = vertex.tex_coords[i];
auto const enabled_coords = options.texcoord_generation_enabled_coordinates[i];
tex_coord = {
((enabled_coords & TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(i, 0) : tex_coord.x(),
((enabled_coords & TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(i, 1) : tex_coord.y(),
((enabled_coords & TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(i, 2) : tex_coord.z(),
((enabled_coords & TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(i, 3) : tex_coord.w(),
};
}
}
void Device::draw_primitives(PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix3x3 const& normal_transform,
FloatMatrix4x4 const& projection_transform, FloatMatrix4x4 const& texture_transform, Vector<Vertex> const& vertices,
Vector<size_t> const& enabled_texture_units)
{
// At this point, the user has effectively specified that they are done with defining the geometry
// of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
//
// 1. Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix
// 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
// 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
// 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
// 5. The vertices are sorted (for the rasterizer, how are we doing this? 3Dfx did this top to bottom in terms of vertex y coordinates)
// 6. The vertices are then sent off to the rasterizer and drawn to the screen
m_enabled_texture_units = enabled_texture_units;
m_triangle_list.clear_with_capacity();
m_processed_triangles.clear_with_capacity();
// Let's construct some triangles
if (primitive_type == PrimitiveType::Triangles) {
Triangle triangle;
if (vertices.size() < 3)
return;
for (size_t i = 0; i < vertices.size() - 2; i += 3) {
triangle.vertices[0] = vertices.at(i);
triangle.vertices[1] = vertices.at(i + 1);
triangle.vertices[2] = vertices.at(i + 2);
m_triangle_list.append(triangle);
}
} else if (primitive_type == PrimitiveType::Quads) {
// We need to construct two triangles to form the quad
Triangle triangle;
if (vertices.size() < 4)
return;
for (size_t i = 0; i < vertices.size() - 3; i += 4) {
// Triangle 1
triangle.vertices[0] = vertices.at(i);
triangle.vertices[1] = vertices.at(i + 1);
triangle.vertices[2] = vertices.at(i + 2);
m_triangle_list.append(triangle);
// Triangle 2
triangle.vertices[0] = vertices.at(i + 2);
triangle.vertices[1] = vertices.at(i + 3);
triangle.vertices[2] = vertices.at(i);
m_triangle_list.append(triangle);
}
} else if (primitive_type == PrimitiveType::TriangleFan) {
Triangle triangle;
triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first
// This is technically `n-2` triangles. We start at index 1
for (size_t i = 1; i < vertices.size() - 1; i++) {
triangle.vertices[1] = vertices.at(i);
triangle.vertices[2] = vertices.at(i + 1);
m_triangle_list.append(triangle);
}
} else if (primitive_type == PrimitiveType::TriangleStrip) {
Triangle triangle;
if (vertices.size() < 3)
return;
for (size_t i = 0; i < vertices.size() - 2; i++) {
if (i % 2 == 0) {
triangle.vertices[0] = vertices.at(i);
triangle.vertices[1] = vertices.at(i + 1);
triangle.vertices[2] = vertices.at(i + 2);
} else {
triangle.vertices[0] = vertices.at(i + 1);
triangle.vertices[1] = vertices.at(i);
triangle.vertices[2] = vertices.at(i + 2);
}
m_triangle_list.append(triangle);
}
}
// Now let's transform each triangle and send that to the GPU
auto const viewport = m_options.viewport;
auto const viewport_half_width = viewport.width() / 2.0f;
auto const viewport_half_height = viewport.height() / 2.0f;
auto const viewport_center_x = viewport.x() + viewport_half_width;
auto const viewport_center_y = viewport.y() + viewport_half_height;
auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
for (auto& triangle : m_triangle_list) {
// Transform vertices into eye coordinates using the model-view transform
triangle.vertices[0].eye_coordinates = model_view_transform * triangle.vertices[0].position;
triangle.vertices[1].eye_coordinates = model_view_transform * triangle.vertices[1].position;
triangle.vertices[2].eye_coordinates = model_view_transform * triangle.vertices[2].position;
// Transform the vertex normals into eye-space
triangle.vertices[0].normal = transform_direction(model_view_transform, triangle.vertices[0].normal);
triangle.vertices[1].normal = transform_direction(model_view_transform, triangle.vertices[1].normal);
triangle.vertices[2].normal = transform_direction(model_view_transform, triangle.vertices[2].normal);
// Calculate per-vertex lighting
if (m_options.lighting_enabled) {
auto const& material = m_materials.at(0);
for (auto& vertex : triangle.vertices) {
auto ambient = material.ambient;
auto diffuse = material.diffuse;
auto emissive = material.emissive;
auto specular = material.specular;
if (m_options.color_material_enabled
&& (m_options.color_material_face == ColorMaterialFace::Front || m_options.color_material_face == ColorMaterialFace::FrontAndBack)) {
switch (m_options.color_material_mode) {
case ColorMaterialMode::Ambient:
ambient = vertex.color;
break;
case ColorMaterialMode::AmbientAndDiffuse:
ambient = vertex.color;
diffuse = vertex.color;
break;
case ColorMaterialMode::Diffuse:
diffuse = vertex.color;
break;
case ColorMaterialMode::Emissive:
emissive = vertex.color;
break;
case ColorMaterialMode::Specular:
specular = vertex.color;
break;
}
}
FloatVector4 result_color = emissive + (ambient * m_lighting_model.scene_ambient_color);
for (auto const& light : m_lights) {
if (!light.is_enabled)
continue;
// We need to save the length here because the attenuation factor requires a non-normalized vector!
auto sgi_arrow_operator = [](FloatVector4 const& p1, FloatVector4 const& p2, float& output_length) {
FloatVector3 light_vector;
if ((p1.w() != 0.f) && (p2.w() == 0.f))
light_vector = p2.xyz();
else if ((p1.w() == 0.f) && (p2.w() != 0.f))
light_vector = -p1.xyz();
else
light_vector = p2.xyz() - p1.xyz();
output_length = light_vector.length();
if (output_length == 0.f)
return light_vector;
return light_vector / output_length;
};
auto sgi_dot_operator = [](FloatVector3 const& d1, FloatVector3 const& d2) {
return AK::max(d1.dot(d2), 0.0f);
};
float vertex_to_light_length = 0.f;
FloatVector3 vertex_to_light = sgi_arrow_operator(vertex.eye_coordinates, light.position, vertex_to_light_length);
// Light attenuation value.
float light_attenuation_factor = 1.0f;
if (light.position.w() != 0.0f)
light_attenuation_factor = 1.0f / (light.constant_attenuation + (light.linear_attenuation * vertex_to_light_length) + (light.quadratic_attenuation * vertex_to_light_length * vertex_to_light_length));
// Spotlight factor
float spotlight_factor = 1.0f;
if (light.spotlight_cutoff_angle != 180.0f) {
auto const vertex_to_light_dot_spotlight_direction = sgi_dot_operator(vertex_to_light, light.spotlight_direction.normalized());
auto const cos_spotlight_cutoff = AK::cos<float>(light.spotlight_cutoff_angle * AK::Pi<float> / 180.f);
if (vertex_to_light_dot_spotlight_direction >= cos_spotlight_cutoff)
spotlight_factor = AK::pow<float>(vertex_to_light_dot_spotlight_direction, light.spotlight_exponent);
else
spotlight_factor = 0.0f;
}
// FIXME: The spec allows for splitting the colors calculated here into multiple different colors (primary/secondary color). Investigate what this means.
(void)m_lighting_model.single_color;
// FIXME: Two sided lighting should be implemented eventually (I believe this is where the normals are -ve and then lighting is calculated with the BACK material)
(void)m_lighting_model.two_sided_lighting;
// Ambient
auto const ambient_component = ambient * light.ambient_intensity;
// Diffuse
auto const normal_dot_vertex_to_light = sgi_dot_operator(vertex.normal, vertex_to_light);
auto const diffuse_component = ((diffuse * light.diffuse_intensity) * normal_dot_vertex_to_light);
// Specular
FloatVector4 specular_component = { 0.0f, 0.0f, 0.0f, 0.0f };
if (normal_dot_vertex_to_light > 0.0f) {
FloatVector3 half_vector_normalized;
if (!m_lighting_model.viewer_at_infinity) {
half_vector_normalized = (vertex_to_light + FloatVector3(0.0f, 0.0f, 1.0f)).normalized();
} else {
auto const vertex_to_eye_point = sgi_arrow_operator(vertex.eye_coordinates.normalized(), { 0.f, 0.f, 0.f, 1.f }, vertex_to_light_length);
half_vector_normalized = vertex_to_light + vertex_to_eye_point;
}
auto const normal_dot_half_vector = sgi_dot_operator(vertex.normal.normalized(), half_vector_normalized);
auto const specular_coefficient = AK::pow(normal_dot_half_vector, material.shininess);
specular_component = (specular * light.specular_intensity) * specular_coefficient;
}
auto color = ambient_component + diffuse_component + specular_component;
color = color * light_attenuation_factor * spotlight_factor;
result_color += color;
}
vertex.color = result_color;
vertex.color.set_w(diffuse.w()); // OpenGL 1.5 spec, page 59: "The A produced by lighting is the alpha value associated with diffuse color material"
vertex.color.clamp(0.0f, 1.0f);
}
}
// Transform eye coordinates into clip coordinates using the projection transform
triangle.vertices[0].clip_coordinates = projection_transform * triangle.vertices[0].eye_coordinates;
triangle.vertices[1].clip_coordinates = projection_transform * triangle.vertices[1].eye_coordinates;
triangle.vertices[2].clip_coordinates = projection_transform * triangle.vertices[2].eye_coordinates;
// At this point, we're in clip space
// Here's where we do the clipping. This is a really crude implementation of the
// https://learnopengl.com/Getting-started/Coordinate-Systems
// "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL
// will reconstruct the triangle as one or more triangles to fit inside the clipping range. "
//
// ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER
// Okay, let's do some face culling first
m_clipped_vertices.clear_with_capacity();
m_clipped_vertices.append(triangle.vertices[0]);
m_clipped_vertices.append(triangle.vertices[1]);
m_clipped_vertices.append(triangle.vertices[2]);
m_clipper.clip_triangle_against_frustum(m_clipped_vertices);
if (m_clipped_vertices.size() < 3)
continue;
for (auto& vec : m_clipped_vertices) {
// To normalized device coordinates (NDC)
auto const one_over_w = 1 / vec.clip_coordinates.w();
auto const ndc_coordinates = FloatVector4 {
vec.clip_coordinates.x() * one_over_w,
vec.clip_coordinates.y() * one_over_w,
vec.clip_coordinates.z() * one_over_w,
one_over_w,
};
// To window coordinates
vec.window_coordinates = {
viewport_center_x + ndc_coordinates.x() * viewport_half_width,
viewport_center_y + ndc_coordinates.y() * viewport_half_height,
depth_halfway + ndc_coordinates.z() * depth_half_range,
ndc_coordinates.w(),
};
}
Triangle tri;
tri.vertices[0] = m_clipped_vertices[0];
for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
tri.vertices[1] = m_clipped_vertices[i];
tri.vertices[2] = m_clipped_vertices[i + 1];
m_processed_triangles.append(tri);
}
}
// Generate texture coordinates if at least one coordinate is enabled
bool texture_coordinate_generation_enabled = false;
for (auto const coordinates_enabled : m_options.texcoord_generation_enabled_coordinates) {
if (coordinates_enabled != TexCoordGenerationCoordinate::None) {
texture_coordinate_generation_enabled = true;
break;
}
}
for (auto& triangle : m_processed_triangles) {
// Let's calculate the (signed) area of the triangle
// https://cp-algorithms.com/geometry/oriented-triangle-area.html
float dxAB = triangle.vertices[0].window_coordinates.x() - triangle.vertices[1].window_coordinates.x(); // A.x - B.x
float dxBC = triangle.vertices[1].window_coordinates.x() - triangle.vertices[2].window_coordinates.x(); // B.X - C.x
float dyAB = triangle.vertices[0].window_coordinates.y() - triangle.vertices[1].window_coordinates.y();
float dyBC = triangle.vertices[1].window_coordinates.y() - triangle.vertices[2].window_coordinates.y();
float area = (dxAB * dyBC) - (dxBC * dyAB);
if (area == 0.0f)
continue;
if (m_options.enable_culling) {
bool is_front = (m_options.front_face == WindingOrder::CounterClockwise ? area > 0 : area < 0);
if (!is_front && m_options.cull_back)
continue;
if (is_front && m_options.cull_front)
continue;
}
if (area > 0)
swap(triangle.vertices[0], triangle.vertices[1]);
// Transform normals
triangle.vertices[0].normal = normal_transform * triangle.vertices[0].normal;
triangle.vertices[1].normal = normal_transform * triangle.vertices[1].normal;
triangle.vertices[2].normal = normal_transform * triangle.vertices[2].normal;
if (m_options.normalization_enabled) {
triangle.vertices[0].normal.normalize();
triangle.vertices[1].normal.normalize();
triangle.vertices[2].normal.normalize();
}
if (texture_coordinate_generation_enabled) {
generate_texture_coordinates(triangle.vertices[0], m_options);
generate_texture_coordinates(triangle.vertices[1], m_options);
generate_texture_coordinates(triangle.vertices[2], m_options);
}
// Apply texture transformation
for (size_t i = 0; i < NUM_SAMPLERS; ++i) {
triangle.vertices[0].tex_coords[i] = texture_transform * triangle.vertices[0].tex_coords[i];
triangle.vertices[1].tex_coords[i] = texture_transform * triangle.vertices[1].tex_coords[i];
triangle.vertices[2].tex_coords[i] = texture_transform * triangle.vertices[2].tex_coords[i];
}
rasterize_triangle(triangle);
}
}
ALWAYS_INLINE void Device::shade_fragments(PixelQuad& quad)
{
quad.out_color = quad.vertex_color;
for (size_t i : m_enabled_texture_units) {
// FIXME: implement GL_TEXTURE_1D, GL_TEXTURE_3D and GL_TEXTURE_CUBE_MAP
auto const& sampler = m_samplers[i];
auto texel = sampler.sample_2d(quad.texture_coordinates[i].xy());
INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1);
// FIXME: Implement more blend modes
switch (sampler.config().fixed_function_texture_env_mode) {
case TextureEnvMode::Modulate:
quad.out_color = quad.out_color * texel;
break;
case TextureEnvMode::Replace:
quad.out_color = texel;
break;
case TextureEnvMode::Decal: {
auto dst_alpha = texel.w();
quad.out_color.set_x(mix(quad.out_color.x(), texel.x(), dst_alpha));
quad.out_color.set_y(mix(quad.out_color.y(), texel.y(), dst_alpha));
quad.out_color.set_z(mix(quad.out_color.z(), texel.z(), dst_alpha));
break;
}
default:
VERIFY_NOT_REACHED();
}
}
// Calculate fog
// Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
// FIXME: exponential fog is not vectorized, we should add a SIMD exp function that calculates an approximation.
if (m_options.fog_enabled) {
auto factor = expand4(0.0f);
switch (m_options.fog_mode) {
case FogMode::Linear:
factor = (m_options.fog_end - quad.fog_depth) / (m_options.fog_end - m_options.fog_start);
break;
case FogMode::Exp: {
auto argument = -m_options.fog_density * quad.fog_depth;
factor = exp(argument);
} break;
case FogMode::Exp2: {
auto argument = m_options.fog_density * quad.fog_depth;
argument *= -argument;
factor = exp(argument);
} break;
default:
VERIFY_NOT_REACHED();
}
// Mix texel's RGB with fog's RBG - leave alpha alone
auto fog_color = expand4(m_options.fog_color);
quad.out_color.set_x(mix(fog_color.x(), quad.out_color.x(), factor));
quad.out_color.set_y(mix(fog_color.y(), quad.out_color.y(), factor));
quad.out_color.set_z(mix(fog_color.z(), quad.out_color.z(), factor));
}
}
ALWAYS_INLINE bool Device::test_alpha(PixelQuad& quad)
{
auto const alpha = quad.out_color.w();
auto const ref_value = expand4(m_options.alpha_test_ref_value);
switch (m_options.alpha_test_func) {
case AlphaTestFunction::Less:
quad.mask &= alpha < ref_value;
break;
case AlphaTestFunction::Equal:
quad.mask &= alpha == ref_value;
break;
case AlphaTestFunction::LessOrEqual:
quad.mask &= alpha <= ref_value;
break;
case AlphaTestFunction::Greater:
quad.mask &= alpha > ref_value;
break;
case AlphaTestFunction::NotEqual:
quad.mask &= alpha != ref_value;
break;
case AlphaTestFunction::GreaterOrEqual:
quad.mask &= alpha >= ref_value;
break;
case AlphaTestFunction::Never:
case AlphaTestFunction::Always:
default:
VERIFY_NOT_REACHED();
}
return any(quad.mask);
}
void Device::resize(Gfx::IntSize const& size)
{
auto frame_buffer_or_error = FrameBuffer<ColorType, DepthType, StencilType>::try_create(size);
m_frame_buffer = MUST(frame_buffer_or_error);
}
void Device::clear_color(FloatVector4 const& color)
{
auto const fill_color = to_bgra32(color);
auto clear_rect = m_frame_buffer->rect();
if (m_options.scissor_enabled)
clear_rect.intersect(m_options.scissor_box);
m_frame_buffer->color_buffer()->fill(fill_color, clear_rect);
}
void Device::clear_depth(DepthType depth)
{
auto clear_rect = m_frame_buffer->rect();
if (m_options.scissor_enabled)
clear_rect.intersect(m_options.scissor_box);
m_frame_buffer->depth_buffer()->fill(depth, clear_rect);
}
void Device::clear_stencil(StencilType value)
{
auto clear_rect = m_frame_buffer->rect();
if (m_options.scissor_enabled)
clear_rect.intersect(m_options.scissor_box);
m_frame_buffer->stencil_buffer()->fill(value, clear_rect);
}
void Device::blit_to_color_buffer_at_raster_position(Gfx::Bitmap const& source)
{
if (!m_raster_position.valid)
return;
INCREASE_STATISTICS_COUNTER(g_num_pixels, source.width() * source.height());
INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, source.width() * source.height());
auto const blit_rect = get_rasterization_rect_of_size({ source.width(), source.height() });
m_frame_buffer->color_buffer()->blit_from_bitmap(source, blit_rect);
}
void Device::blit_to_depth_buffer_at_raster_position(Vector<DepthType> const& depth_values, int width, int height)
{
if (!m_raster_position.valid)
return;
auto const raster_rect = get_rasterization_rect_of_size({ width, height });
auto const y1 = raster_rect.y();
auto const y2 = y1 + height;
auto const x1 = raster_rect.x();
auto const x2 = x1 + width;
auto index = 0;
for (auto y = y1; y < y2; ++y) {
auto depth_line = m_frame_buffer->depth_buffer()->scanline(y);
for (auto x = x1; x < x2; ++x)
depth_line[x] = depth_values[index++];
}
}
void Device::blit_color_buffer_to(Gfx::Bitmap& target)
{
m_frame_buffer->color_buffer()->blit_flipped_to_bitmap(target, m_frame_buffer->rect());
if constexpr (ENABLE_STATISTICS_OVERLAY)
draw_statistics_overlay(target);
}
void Device::draw_statistics_overlay(Gfx::Bitmap& target)
{
static Core::ElapsedTimer timer;
static String debug_string;
static int frame_counter;
frame_counter++;
int milliseconds = 0;
if (timer.is_valid())
milliseconds = timer.elapsed();
else
timer.start();
Gfx::Painter painter { target };
if (milliseconds > MILLISECONDS_PER_STATISTICS_PERIOD) {
int num_rendertarget_pixels = m_frame_buffer->rect().size().area();
StringBuilder builder;
builder.append(String::formatted("Timings : {:.1}ms {:.1}FPS\n",
static_cast<double>(milliseconds) / frame_counter,
(milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0));
builder.append(String::formatted("Triangles : {}\n", g_num_rasterized_triangles));
builder.append(String::formatted("SIMD usage : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0));
builder.append(String::formatted("Pixels : {}, Stencil: {}%, Shaded: {}%, Blended: {}%, Overdraw: {}%\n",
g_num_pixels,
g_num_pixels > 0 ? g_num_stencil_writes * 100 / g_num_pixels : 0,
g_num_pixels > 0 ? g_num_pixels_shaded * 100 / g_num_pixels : 0,
g_num_pixels_shaded > 0 ? g_num_pixels_blended * 100 / g_num_pixels_shaded : 0,
num_rendertarget_pixels > 0 ? g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100 : 0));
builder.append(String::formatted("Sampler calls: {}\n", g_num_sampler_calls));
debug_string = builder.to_string();
frame_counter = 0;
timer.start();
}
g_num_rasterized_triangles = 0;
g_num_pixels = 0;
g_num_pixels_shaded = 0;
g_num_pixels_blended = 0;
g_num_sampler_calls = 0;
g_num_stencil_writes = 0;
g_num_quads = 0;
auto& font = Gfx::FontDatabase::default_fixed_width_font();
for (int y = -1; y < 2; y++)
for (int x = -1; x < 2; x++)
if (x != 0 && y != 0)
painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black);
painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White);
}
void Device::set_options(const RasterizerOptions& options)
{
m_options = options;
if (m_options.enable_blending)
setup_blend_factors();
}
void Device::set_light_model_params(const LightModelParameters& lighting_model)
{
m_lighting_model = lighting_model;
}
ColorType Device::get_color_buffer_pixel(int x, int y)
{
// FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
if (!m_frame_buffer->rect().contains(x, y))
return 0;
return m_frame_buffer->color_buffer()->scanline(y)[x];
}
DepthType Device::get_depthbuffer_value(int x, int y)
{
// FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
if (!m_frame_buffer->rect().contains(x, y))
return 1.0f;
return m_frame_buffer->depth_buffer()->scanline(y)[x];
}
NonnullRefPtr<Image> Device::create_image(ImageFormat format, unsigned width, unsigned height, unsigned depth, unsigned levels, unsigned layers)
{
VERIFY(format == ImageFormat::BGRA8888);
VERIFY(width > 0);
VERIFY(height > 0);
VERIFY(depth > 0);
VERIFY(levels > 0);
VERIFY(layers > 0);
return adopt_ref(*new Image(width, height, depth, levels, layers));
}
void Device::set_sampler_config(unsigned sampler, SamplerConfig const& config)
{
m_samplers[sampler].set_config(config);
}
void Device::set_light_state(unsigned int light_id, Light const& light)
{
m_lights.at(light_id) = light;
}
void Device::set_material_state(Face face, Material const& material)
{
m_materials[face] = material;
}
void Device::set_stencil_configuration(Face face, StencilConfiguration const& stencil_configuration)
{
m_stencil_configuration[face] = stencil_configuration;
}
void Device::set_raster_position(RasterPosition const& raster_position)
{
m_raster_position = raster_position;
}
void Device::set_raster_position(FloatVector4 const& position, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform)
{
auto const eye_coordinates = model_view_transform * position;
auto const clip_coordinates = projection_transform * eye_coordinates;
// FIXME: implement clipping
m_raster_position.valid = true;
auto ndc_coordinates = clip_coordinates / clip_coordinates.w();
ndc_coordinates.set_w(clip_coordinates.w());
auto const viewport = m_options.viewport;
auto const viewport_half_width = viewport.width() / 2.0f;
auto const viewport_half_height = viewport.height() / 2.0f;
auto const viewport_center_x = viewport.x() + viewport_half_width;
auto const viewport_center_y = viewport.y() + viewport_half_height;
auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
// FIXME: implement other raster position properties such as color and texcoords
m_raster_position.window_coordinates = {
viewport_center_x + ndc_coordinates.x() * viewport_half_width,
viewport_center_y + ndc_coordinates.y() * viewport_half_height,
depth_halfway + ndc_coordinates.z() * depth_half_range,
ndc_coordinates.w(),
};
m_raster_position.eye_coordinate_distance = eye_coordinates.length();
}
Gfx::IntRect Device::get_rasterization_rect_of_size(Gfx::IntSize size)
{
// Round the X and Y floating point coordinates to the nearest integer; OpenGL 1.5 spec:
// "Any fragments whose centers lie inside of this rectangle (or on its bottom or left
// boundaries) are produced in correspondence with this particular group of elements."
return {
static_cast<int>(lroundf(m_raster_position.window_coordinates.x())),
static_cast<int>(lroundf(m_raster_position.window_coordinates.y())),
size.width(),
size.height(),
};
}
}