ladybird/Kernel/Process.h
Itamar 38ddf301f6 Kernel+LibC: Fix ptrace for 64-bit
This makes the types used in the PT_PEEK and PT_POKE actions
suitable for 64-bit platforms as well.
2021-11-20 21:22:24 +00:00

989 lines
39 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/HashMap.h>
#include <AK/IntrusiveList.h>
#include <AK/IntrusiveListRelaxedConst.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/OwnPtr.h>
#include <AK/String.h>
#include <AK/Userspace.h>
#include <AK/Variant.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/AtomicEdgeAction.h>
#include <Kernel/FileSystem/InodeMetadata.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/FileSystem/UnveilNode.h>
#include <Kernel/Forward.h>
#include <Kernel/FutexQueue.h>
#include <Kernel/Locking/Mutex.h>
#include <Kernel/Locking/MutexProtected.h>
#include <Kernel/Memory/AddressSpace.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/ProcessExposed.h>
#include <Kernel/ProcessGroup.h>
#include <Kernel/StdLib.h>
#include <Kernel/Thread.h>
#include <Kernel/UnixTypes.h>
#include <LibC/elf.h>
#include <LibC/signal_numbers.h>
namespace Kernel {
MutexProtected<String>& hostname();
Time kgettimeofday();
#define ENUMERATE_PLEDGE_PROMISES \
__ENUMERATE_PLEDGE_PROMISE(stdio) \
__ENUMERATE_PLEDGE_PROMISE(rpath) \
__ENUMERATE_PLEDGE_PROMISE(wpath) \
__ENUMERATE_PLEDGE_PROMISE(cpath) \
__ENUMERATE_PLEDGE_PROMISE(dpath) \
__ENUMERATE_PLEDGE_PROMISE(inet) \
__ENUMERATE_PLEDGE_PROMISE(id) \
__ENUMERATE_PLEDGE_PROMISE(proc) \
__ENUMERATE_PLEDGE_PROMISE(ptrace) \
__ENUMERATE_PLEDGE_PROMISE(exec) \
__ENUMERATE_PLEDGE_PROMISE(unix) \
__ENUMERATE_PLEDGE_PROMISE(recvfd) \
__ENUMERATE_PLEDGE_PROMISE(sendfd) \
__ENUMERATE_PLEDGE_PROMISE(fattr) \
__ENUMERATE_PLEDGE_PROMISE(tty) \
__ENUMERATE_PLEDGE_PROMISE(chown) \
__ENUMERATE_PLEDGE_PROMISE(thread) \
__ENUMERATE_PLEDGE_PROMISE(video) \
__ENUMERATE_PLEDGE_PROMISE(accept) \
__ENUMERATE_PLEDGE_PROMISE(settime) \
__ENUMERATE_PLEDGE_PROMISE(sigaction) \
__ENUMERATE_PLEDGE_PROMISE(setkeymap) \
__ENUMERATE_PLEDGE_PROMISE(prot_exec) \
__ENUMERATE_PLEDGE_PROMISE(map_fixed) \
__ENUMERATE_PLEDGE_PROMISE(getkeymap)
enum class Pledge : u32 {
#define __ENUMERATE_PLEDGE_PROMISE(x) x,
ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
};
enum class VeilState {
None,
Dropped,
Locked,
};
using FutexQueues = HashMap<FlatPtr, RefPtr<FutexQueue>>;
struct LoadResult;
class Process final
: public AK::RefCountedBase
, public Weakable<Process> {
class ProtectedValues {
public:
ProcessID pid { 0 };
ProcessID ppid { 0 };
SessionID sid { 0 };
UserID euid { 0 };
GroupID egid { 0 };
UserID uid { 0 };
GroupID gid { 0 };
UserID suid { 0 };
GroupID sgid { 0 };
Vector<GroupID> extra_gids;
bool dumpable { false };
Atomic<bool> has_promises { false };
Atomic<u32> promises { 0 };
Atomic<bool> has_execpromises { false };
Atomic<u32> execpromises { 0 };
mode_t umask { 022 };
VirtualAddress signal_trampoline;
Atomic<u32> thread_count { 0 };
u8 termination_status { 0 };
u8 termination_signal { 0 };
};
public:
AK_MAKE_NONCOPYABLE(Process);
AK_MAKE_NONMOVABLE(Process);
MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);
friend class Thread;
friend class Coredump;
friend class ProcFSProcessOpenFileDescriptions;
// Helper class to temporarily unprotect a process's protected data so you can write to it.
class ProtectedDataMutationScope {
public:
explicit ProtectedDataMutationScope(Process& process)
: m_process(process)
{
m_process.unprotect_data();
}
~ProtectedDataMutationScope() { m_process.protect_data(); }
private:
Process& m_process;
};
enum class State : u8 {
Running = 0,
Dying,
Dead
};
public:
class ProcessProcFSTraits;
inline static Process& current()
{
auto* current_thread = Processor::current_thread();
VERIFY(current_thread);
return current_thread->process();
}
inline static bool has_current()
{
return Processor::current_thread() != nullptr;
}
template<typename EntryFunction>
static void kernel_process_trampoline(void* data)
{
EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
(*func)();
delete func;
}
enum class RegisterProcess {
No,
Yes
};
template<typename EntryFunction>
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes)
{
auto* entry_func = new EntryFunction(move(entry));
return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity, do_register);
}
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes);
static ErrorOr<NonnullRefPtr<Process>> try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID, GroupID, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY*);
static void register_new(Process&);
bool unref() const;
~Process();
static NonnullRefPtrVector<Process> all_processes();
RefPtr<Thread> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
bool is_profiling() const { return m_profiling; }
void set_profiling(bool profiling) { m_profiling = profiling; }
bool should_generate_coredump() const { return m_should_generate_coredump; }
void set_should_generate_coredump(bool b) { m_should_generate_coredump = b; }
bool is_dying() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) != State::Running; }
bool is_dead() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) == State::Dead; }
bool is_stopped() const { return m_is_stopped; }
bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }
bool is_kernel_process() const { return m_is_kernel_process; }
bool is_user_process() const { return !m_is_kernel_process; }
static RefPtr<Process> from_pid(ProcessID);
static SessionID get_sid_from_pgid(ProcessGroupID pgid);
StringView name() const { return m_name->view(); }
ProcessID pid() const { return m_protected_values.pid; }
SessionID sid() const { return m_protected_values.sid; }
bool is_session_leader() const { return sid().value() == pid().value(); }
ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
bool is_group_leader() const { return pgid().value() == pid().value(); }
Vector<GroupID> const& extra_gids() const { return m_protected_values.extra_gids; }
UserID euid() const { return m_protected_values.euid; }
GroupID egid() const { return m_protected_values.egid; }
UserID uid() const { return m_protected_values.uid; }
GroupID gid() const { return m_protected_values.gid; }
UserID suid() const { return m_protected_values.suid; }
GroupID sgid() const { return m_protected_values.sgid; }
ProcessID ppid() const { return m_protected_values.ppid; }
bool is_dumpable() const { return m_protected_values.dumpable; }
void set_dumpable(bool);
mode_t umask() const { return m_protected_values.umask; }
bool in_group(GroupID) const;
// Breakable iteration functions
template<IteratorFunction<Process&> Callback>
static void for_each(Callback);
template<IteratorFunction<Process&> Callback>
static void for_each_in_pgrp(ProcessGroupID, Callback);
template<IteratorFunction<Process&> Callback>
void for_each_child(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
// Non-breakable iteration functions
template<VoidFunction<Process&> Callback>
static void for_each(Callback);
template<VoidFunction<Process&> Callback>
static void for_each_in_pgrp(ProcessGroupID, Callback);
template<VoidFunction<Process&> Callback>
void for_each_child(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
void die();
void finalize();
ThreadTracer* tracer() { return m_tracer.ptr(); }
bool is_traced() const { return !!m_tracer; }
ErrorOr<void> start_tracing_from(ProcessID tracer);
void stop_tracing();
void tracer_trap(Thread&, const RegisterState&);
ErrorOr<FlatPtr> sys$emuctl();
ErrorOr<FlatPtr> sys$yield();
ErrorOr<FlatPtr> sys$sync();
ErrorOr<FlatPtr> sys$beep();
ErrorOr<FlatPtr> sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
ErrorOr<FlatPtr> sys$set_process_name(Userspace<const char*> user_name, size_t user_name_length);
ErrorOr<FlatPtr> sys$create_inode_watcher(u32 flags);
ErrorOr<FlatPtr> sys$inode_watcher_add_watch(Userspace<const Syscall::SC_inode_watcher_add_watch_params*> user_params);
ErrorOr<FlatPtr> sys$inode_watcher_remove_watch(int fd, int wd);
ErrorOr<FlatPtr> sys$dbgputch(u8);
ErrorOr<FlatPtr> sys$dbgputstr(Userspace<const char*>, size_t);
ErrorOr<FlatPtr> sys$dump_backtrace();
ErrorOr<FlatPtr> sys$gettid();
ErrorOr<FlatPtr> sys$setsid();
ErrorOr<FlatPtr> sys$getsid(pid_t);
ErrorOr<FlatPtr> sys$setpgid(pid_t pid, pid_t pgid);
ErrorOr<FlatPtr> sys$getpgrp();
ErrorOr<FlatPtr> sys$getpgid(pid_t);
ErrorOr<FlatPtr> sys$getuid();
ErrorOr<FlatPtr> sys$getgid();
ErrorOr<FlatPtr> sys$geteuid();
ErrorOr<FlatPtr> sys$getegid();
ErrorOr<FlatPtr> sys$getpid();
ErrorOr<FlatPtr> sys$getppid();
ErrorOr<FlatPtr> sys$getresuid(Userspace<UserID*>, Userspace<UserID*>, Userspace<UserID*>);
ErrorOr<FlatPtr> sys$getresgid(Userspace<GroupID*>, Userspace<GroupID*>, Userspace<GroupID*>);
ErrorOr<FlatPtr> sys$umask(mode_t);
ErrorOr<FlatPtr> sys$open(Userspace<const Syscall::SC_open_params*>);
ErrorOr<FlatPtr> sys$close(int fd);
ErrorOr<FlatPtr> sys$read(int fd, Userspace<u8*>, size_t);
ErrorOr<FlatPtr> sys$pread(int fd, Userspace<u8*>, size_t, Userspace<off_t*>);
ErrorOr<FlatPtr> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
ErrorOr<FlatPtr> sys$write(int fd, Userspace<const u8*>, size_t);
ErrorOr<FlatPtr> sys$writev(int fd, Userspace<const struct iovec*> iov, int iov_count);
ErrorOr<FlatPtr> sys$fstat(int fd, Userspace<stat*>);
ErrorOr<FlatPtr> sys$stat(Userspace<const Syscall::SC_stat_params*>);
ErrorOr<FlatPtr> sys$lseek(int fd, Userspace<off_t*>, int whence);
ErrorOr<FlatPtr> sys$ftruncate(int fd, Userspace<off_t*>);
ErrorOr<FlatPtr> sys$kill(pid_t pid_or_pgid, int sig);
[[noreturn]] void sys$exit(int status);
ErrorOr<FlatPtr> sys$sigreturn(RegisterState& registers);
ErrorOr<FlatPtr> sys$waitid(Userspace<const Syscall::SC_waitid_params*>);
ErrorOr<FlatPtr> sys$mmap(Userspace<const Syscall::SC_mmap_params*>);
ErrorOr<FlatPtr> sys$mremap(Userspace<const Syscall::SC_mremap_params*>);
ErrorOr<FlatPtr> sys$munmap(Userspace<void*>, size_t);
ErrorOr<FlatPtr> sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*>);
ErrorOr<FlatPtr> sys$mprotect(Userspace<void*>, size_t, int prot);
ErrorOr<FlatPtr> sys$madvise(Userspace<void*>, size_t, int advice);
ErrorOr<FlatPtr> sys$msyscall(Userspace<void*>);
ErrorOr<FlatPtr> sys$msync(Userspace<void*>, size_t, int flags);
ErrorOr<FlatPtr> sys$purge(int mode);
ErrorOr<FlatPtr> sys$select(Userspace<const Syscall::SC_select_params*>);
ErrorOr<FlatPtr> sys$poll(Userspace<const Syscall::SC_poll_params*>);
ErrorOr<FlatPtr> sys$get_dir_entries(int fd, Userspace<void*>, size_t);
ErrorOr<FlatPtr> sys$getcwd(Userspace<char*>, size_t);
ErrorOr<FlatPtr> sys$chdir(Userspace<const char*>, size_t);
ErrorOr<FlatPtr> sys$fchdir(int fd);
ErrorOr<FlatPtr> sys$adjtime(Userspace<const timeval*>, Userspace<timeval*>);
ErrorOr<FlatPtr> sys$clock_gettime(clockid_t, Userspace<timespec*>);
ErrorOr<FlatPtr> sys$clock_settime(clockid_t, Userspace<const timespec*>);
ErrorOr<FlatPtr> sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_params*>);
ErrorOr<FlatPtr> sys$gethostname(Userspace<char*>, size_t);
ErrorOr<FlatPtr> sys$sethostname(Userspace<const char*>, size_t);
ErrorOr<FlatPtr> sys$uname(Userspace<utsname*>);
ErrorOr<FlatPtr> sys$readlink(Userspace<const Syscall::SC_readlink_params*>);
ErrorOr<FlatPtr> sys$ttyname(int fd, Userspace<char*>, size_t);
ErrorOr<FlatPtr> sys$ptsname(int fd, Userspace<char*>, size_t);
ErrorOr<FlatPtr> sys$fork(RegisterState&);
ErrorOr<FlatPtr> sys$execve(Userspace<const Syscall::SC_execve_params*>);
ErrorOr<FlatPtr> sys$dup2(int old_fd, int new_fd);
ErrorOr<FlatPtr> sys$sigaction(int signum, Userspace<const sigaction*> act, Userspace<sigaction*> old_act);
ErrorOr<FlatPtr> sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set);
ErrorOr<FlatPtr> sys$sigpending(Userspace<sigset_t*>);
ErrorOr<FlatPtr> sys$getgroups(size_t, Userspace<gid_t*>);
ErrorOr<FlatPtr> sys$setgroups(size_t, Userspace<const gid_t*>);
ErrorOr<FlatPtr> sys$pipe(int pipefd[2], int flags);
ErrorOr<FlatPtr> sys$killpg(pid_t pgrp, int sig);
ErrorOr<FlatPtr> sys$seteuid(UserID);
ErrorOr<FlatPtr> sys$setegid(GroupID);
ErrorOr<FlatPtr> sys$setuid(UserID);
ErrorOr<FlatPtr> sys$setgid(GroupID);
ErrorOr<FlatPtr> sys$setreuid(UserID, UserID);
ErrorOr<FlatPtr> sys$setresuid(UserID, UserID, UserID);
ErrorOr<FlatPtr> sys$setresgid(GroupID, GroupID, GroupID);
ErrorOr<FlatPtr> sys$alarm(unsigned seconds);
ErrorOr<FlatPtr> sys$access(Userspace<const char*> pathname, size_t path_length, int mode);
ErrorOr<FlatPtr> sys$fcntl(int fd, int cmd, u32 extra_arg);
ErrorOr<FlatPtr> sys$ioctl(int fd, unsigned request, FlatPtr arg);
ErrorOr<FlatPtr> sys$mkdir(Userspace<const char*> pathname, size_t path_length, mode_t mode);
ErrorOr<FlatPtr> sys$times(Userspace<tms*>);
ErrorOr<FlatPtr> sys$utime(Userspace<const char*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
ErrorOr<FlatPtr> sys$link(Userspace<const Syscall::SC_link_params*>);
ErrorOr<FlatPtr> sys$unlink(Userspace<const char*> pathname, size_t path_length);
ErrorOr<FlatPtr> sys$symlink(Userspace<const Syscall::SC_symlink_params*>);
ErrorOr<FlatPtr> sys$rmdir(Userspace<const char*> pathname, size_t path_length);
ErrorOr<FlatPtr> sys$mount(Userspace<const Syscall::SC_mount_params*>);
ErrorOr<FlatPtr> sys$umount(Userspace<const char*> mountpoint, size_t mountpoint_length);
ErrorOr<FlatPtr> sys$chmod(Userspace<const char*> pathname, size_t path_length, mode_t);
ErrorOr<FlatPtr> sys$fchmod(int fd, mode_t);
ErrorOr<FlatPtr> sys$chown(Userspace<const Syscall::SC_chown_params*>);
ErrorOr<FlatPtr> sys$fchown(int fd, UserID, GroupID);
ErrorOr<FlatPtr> sys$fsync(int fd);
ErrorOr<FlatPtr> sys$socket(int domain, int type, int protocol);
ErrorOr<FlatPtr> sys$bind(int sockfd, Userspace<const sockaddr*> addr, socklen_t);
ErrorOr<FlatPtr> sys$listen(int sockfd, int backlog);
ErrorOr<FlatPtr> sys$accept4(Userspace<const Syscall::SC_accept4_params*>);
ErrorOr<FlatPtr> sys$connect(int sockfd, Userspace<const sockaddr*>, socklen_t);
ErrorOr<FlatPtr> sys$shutdown(int sockfd, int how);
ErrorOr<FlatPtr> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
ErrorOr<FlatPtr> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
ErrorOr<FlatPtr> sys$getsockopt(Userspace<const Syscall::SC_getsockopt_params*>);
ErrorOr<FlatPtr> sys$setsockopt(Userspace<const Syscall::SC_setsockopt_params*>);
ErrorOr<FlatPtr> sys$getsockname(Userspace<const Syscall::SC_getsockname_params*>);
ErrorOr<FlatPtr> sys$getpeername(Userspace<const Syscall::SC_getpeername_params*>);
ErrorOr<FlatPtr> sys$socketpair(Userspace<const Syscall::SC_socketpair_params*>);
ErrorOr<FlatPtr> sys$sched_setparam(pid_t pid, Userspace<const struct sched_param*>);
ErrorOr<FlatPtr> sys$sched_getparam(pid_t pid, Userspace<struct sched_param*>);
ErrorOr<FlatPtr> sys$create_thread(void* (*)(void*), Userspace<const Syscall::SC_create_thread_params*>);
[[noreturn]] void sys$exit_thread(Userspace<void*>, Userspace<void*>, size_t);
ErrorOr<FlatPtr> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
ErrorOr<FlatPtr> sys$detach_thread(pid_t tid);
ErrorOr<FlatPtr> sys$set_thread_name(pid_t tid, Userspace<const char*> buffer, size_t buffer_size);
ErrorOr<FlatPtr> sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
ErrorOr<FlatPtr> sys$kill_thread(pid_t tid, int signal);
ErrorOr<FlatPtr> sys$rename(Userspace<const Syscall::SC_rename_params*>);
ErrorOr<FlatPtr> sys$mknod(Userspace<const Syscall::SC_mknod_params*>);
ErrorOr<FlatPtr> sys$realpath(Userspace<const Syscall::SC_realpath_params*>);
ErrorOr<FlatPtr> sys$getrandom(Userspace<void*>, size_t, unsigned int);
ErrorOr<FlatPtr> sys$getkeymap(Userspace<const Syscall::SC_getkeymap_params*>);
ErrorOr<FlatPtr> sys$setkeymap(Userspace<const Syscall::SC_setkeymap_params*>);
ErrorOr<FlatPtr> sys$profiling_enable(pid_t, u64);
ErrorOr<FlatPtr> sys$profiling_disable(pid_t);
ErrorOr<FlatPtr> sys$profiling_free_buffer(pid_t);
ErrorOr<FlatPtr> sys$futex(Userspace<const Syscall::SC_futex_params*>);
ErrorOr<FlatPtr> sys$pledge(Userspace<const Syscall::SC_pledge_params*>);
ErrorOr<FlatPtr> sys$unveil(Userspace<const Syscall::SC_unveil_params*>);
ErrorOr<FlatPtr> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
ErrorOr<FlatPtr> sys$perf_register_string(Userspace<char const*>, size_t);
ErrorOr<FlatPtr> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
ErrorOr<FlatPtr> sys$ptrace(Userspace<const Syscall::SC_ptrace_params*>);
ErrorOr<FlatPtr> sys$sendfd(int sockfd, int fd);
ErrorOr<FlatPtr> sys$recvfd(int sockfd, int options);
ErrorOr<FlatPtr> sys$sysconf(int name);
ErrorOr<FlatPtr> sys$disown(ProcessID);
ErrorOr<FlatPtr> sys$allocate_tls(Userspace<const char*> initial_data, size_t);
ErrorOr<FlatPtr> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2);
ErrorOr<FlatPtr> sys$set_coredump_metadata(Userspace<const Syscall::SC_set_coredump_metadata_params*>);
ErrorOr<FlatPtr> sys$anon_create(size_t, int options);
ErrorOr<FlatPtr> sys$statvfs(Userspace<const Syscall::SC_statvfs_params*> user_params);
ErrorOr<FlatPtr> sys$fstatvfs(int fd, statvfs* buf);
ErrorOr<FlatPtr> sys$map_time_page();
template<bool sockname, typename Params>
ErrorOr<void> get_sock_or_peer_name(Params const&);
static void initialize();
[[noreturn]] void crash(int signal, FlatPtr ip, bool out_of_memory = false);
[[nodiscard]] siginfo_t wait_info() const;
const TTY* tty() const { return m_tty; }
void set_tty(TTY*);
u32 m_ticks_in_user { 0 };
u32 m_ticks_in_kernel { 0 };
u32 m_ticks_in_user_for_dead_children { 0 };
u32 m_ticks_in_kernel_for_dead_children { 0 };
Custody& current_directory();
Custody* executable() { return m_executable.ptr(); }
const Custody* executable() const { return m_executable.ptr(); }
NonnullOwnPtrVector<KString> const& arguments() const { return m_arguments; };
NonnullOwnPtrVector<KString> const& environment() const { return m_environment; };
ErrorOr<void> exec(NonnullOwnPtr<KString> path, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, int recusion_depth = 0);
ErrorOr<LoadResult> load(NonnullRefPtr<OpenFileDescription> main_program_description, RefPtr<OpenFileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header);
bool is_superuser() const { return euid() == 0; }
void terminate_due_to_signal(u8 signal);
ErrorOr<void> send_signal(u8 signal, Process* sender);
u8 termination_signal() const { return m_protected_values.termination_signal; }
u16 thread_count() const
{
return m_protected_values.thread_count.load(AK::MemoryOrder::memory_order_relaxed);
}
Mutex& big_lock() { return m_big_lock; }
Mutex& ptrace_lock() { return m_ptrace_lock; }
bool has_promises() const { return m_protected_values.has_promises; }
bool has_promised(Pledge pledge) const { return (m_protected_values.promises & (1U << (u32)pledge)) != 0; }
VeilState veil_state() const
{
return m_veil_state;
}
const UnveilNode& unveiled_paths() const
{
return m_unveiled_paths;
}
bool wait_for_tracer_at_next_execve() const
{
return m_wait_for_tracer_at_next_execve;
}
void set_wait_for_tracer_at_next_execve(bool val)
{
m_wait_for_tracer_at_next_execve = val;
}
ErrorOr<FlatPtr> peek_user_data(Userspace<const FlatPtr*> address);
ErrorOr<void> poke_user_data(Userspace<FlatPtr*> address, FlatPtr data);
void disowned_by_waiter(Process& process);
void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
Thread::WaitBlockerSet& wait_blocker_set() { return m_wait_blocker_set; }
template<typename Callback>
void for_each_coredump_property(Callback callback) const
{
for (auto const& property : m_coredump_properties) {
if (property.key && property.value)
callback(*property.key, *property.value);
}
}
ErrorOr<void> set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value);
ErrorOr<void> try_set_coredump_property(StringView key, StringView value);
const NonnullRefPtrVector<Thread>& threads_for_coredump(Badge<Coredump>) const { return m_threads_for_coredump; }
PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }
PerformanceEventBuffer const* perf_events() const { return m_perf_event_buffer; }
Memory::AddressSpace& address_space() { return *m_space; }
Memory::AddressSpace const& address_space() const { return *m_space; }
VirtualAddress signal_trampoline() const { return m_protected_values.signal_trampoline; }
void require_promise(Pledge);
void require_no_promises() const;
private:
friend class MemoryManager;
friend class Scheduler;
friend class Region;
friend class PerformanceManager;
bool add_thread(Thread&);
bool remove_thread(Thread&);
Process(NonnullOwnPtr<KString> name, UserID, GroupID, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty);
static ErrorOr<NonnullRefPtr<Process>> try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID, GroupID, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
ErrorOr<void> attach_resources(NonnullOwnPtr<Memory::AddressSpace>&&, RefPtr<Thread>& first_thread, Process* fork_parent);
static ProcessID allocate_pid();
void kill_threads_except_self();
void kill_all_threads();
bool dump_core();
bool dump_perfcore();
bool create_perf_events_buffer_if_needed();
void delete_perf_events_buffer();
ErrorOr<void> do_exec(NonnullRefPtr<OpenFileDescription> main_program_description, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, RefPtr<OpenFileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header);
ErrorOr<FlatPtr> do_write(OpenFileDescription&, const UserOrKernelBuffer&, size_t);
ErrorOr<FlatPtr> do_statvfs(FileSystem const& path, Custody const*, statvfs* buf);
ErrorOr<RefPtr<OpenFileDescription>> find_elf_interpreter_for_executable(StringView path, ElfW(Ehdr) const& main_executable_header, size_t main_executable_header_size, size_t file_size);
ErrorOr<void> do_kill(Process&, int signal);
ErrorOr<void> do_killpg(ProcessGroupID pgrp, int signal);
ErrorOr<void> do_killall(int signal);
ErrorOr<void> do_killself(int signal);
ErrorOr<siginfo_t> do_waitid(Variant<Empty, NonnullRefPtr<Process>, NonnullRefPtr<ProcessGroup>> waitee, int options);
static ErrorOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Userspace<const char*> user_path, size_t path_length);
static ErrorOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const Syscall::StringArgument&);
bool has_tracee_thread(ProcessID tracer_pid);
void clear_futex_queues_on_exec();
void setup_socket_fd(int fd, NonnullRefPtr<OpenFileDescription> description, int type);
public:
NonnullRefPtr<ProcessProcFSTraits> procfs_traits() const { return *m_procfs_traits; }
ErrorOr<void> procfs_get_fds_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_perf_events(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_unveil_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_pledge_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_virtual_memory_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_binary_link(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_current_work_directory_link(KBufferBuilder& builder) const;
mode_t binary_link_required_mode() const;
ErrorOr<size_t> procfs_get_thread_stack(ThreadID thread_id, KBufferBuilder& builder) const;
ErrorOr<void> traverse_stacks_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_stacks_directory(const ProcFS&, StringView name) const;
ErrorOr<size_t> procfs_get_file_description_link(unsigned fd, KBufferBuilder& builder) const;
ErrorOr<void> traverse_file_descriptions_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_file_descriptions_directory(const ProcFS&, StringView name) const;
private:
inline PerformanceEventBuffer* current_perf_events_buffer()
{
if (g_profiling_all_threads)
return g_global_perf_events;
if (m_profiling)
return m_perf_event_buffer.ptr();
return nullptr;
}
mutable IntrusiveListNode<Process> m_list_node;
NonnullOwnPtr<KString> m_name;
OwnPtr<Memory::AddressSpace> m_space;
RefPtr<ProcessGroup> m_pg;
AtomicEdgeAction<u32> m_protected_data_refs;
void protect_data();
void unprotect_data();
OwnPtr<ThreadTracer> m_tracer;
public:
class OpenFileDescriptionAndFlags {
public:
bool is_valid() const { return !m_description.is_null(); }
bool is_allocated() const { return m_is_allocated; }
void allocate()
{
VERIFY(!m_is_allocated);
VERIFY(!is_valid());
m_is_allocated = true;
}
void deallocate()
{
VERIFY(m_is_allocated);
VERIFY(!is_valid());
m_is_allocated = false;
}
OpenFileDescription* description() { return m_description; }
const OpenFileDescription* description() const { return m_description; }
u32 flags() const { return m_flags; }
void set_flags(u32 flags) { m_flags = flags; }
void clear();
void set(NonnullRefPtr<OpenFileDescription>&&, u32 flags = 0);
private:
RefPtr<OpenFileDescription> m_description;
bool m_is_allocated { false };
u32 m_flags { 0 };
};
class ScopedDescriptionAllocation;
class OpenFileDescriptions {
AK_MAKE_NONCOPYABLE(OpenFileDescriptions);
friend class Process;
public:
ALWAYS_INLINE const OpenFileDescriptionAndFlags& operator[](size_t i) const { return at(i); }
ALWAYS_INLINE OpenFileDescriptionAndFlags& operator[](size_t i) { return at(i); }
ErrorOr<void> try_clone(const Kernel::Process::OpenFileDescriptions& other)
{
SpinlockLocker lock_other(other.m_fds_lock);
TRY(try_resize(other.m_fds_metadatas.size()));
for (size_t i = 0; i < other.m_fds_metadatas.size(); ++i) {
m_fds_metadatas[i] = other.m_fds_metadatas[i];
}
return {};
}
const OpenFileDescriptionAndFlags& at(size_t i) const;
OpenFileDescriptionAndFlags& at(size_t i);
OpenFileDescriptionAndFlags const* get_if_valid(size_t i) const;
OpenFileDescriptionAndFlags* get_if_valid(size_t i);
void enumerate(Function<void(const OpenFileDescriptionAndFlags&)>) const;
void change_each(Function<void(OpenFileDescriptionAndFlags&)>);
ErrorOr<ScopedDescriptionAllocation> allocate(int first_candidate_fd = 0);
size_t open_count() const;
ErrorOr<void> try_resize(size_t size) { return m_fds_metadatas.try_resize(size); }
static constexpr size_t max_open()
{
return s_max_open_file_descriptors;
}
void clear()
{
SpinlockLocker lock(m_fds_lock);
m_fds_metadatas.clear();
}
ErrorOr<NonnullRefPtr<OpenFileDescription>> open_file_description(int fd) const;
private:
OpenFileDescriptions() = default;
static constexpr size_t s_max_open_file_descriptors { FD_SETSIZE };
mutable Spinlock m_fds_lock;
Vector<OpenFileDescriptionAndFlags> m_fds_metadatas;
};
class ScopedDescriptionAllocation {
AK_MAKE_NONCOPYABLE(ScopedDescriptionAllocation);
public:
ScopedDescriptionAllocation() = default;
ScopedDescriptionAllocation(int tracked_fd, OpenFileDescriptionAndFlags* description)
: fd(tracked_fd)
, m_description(description)
{
}
ScopedDescriptionAllocation(ScopedDescriptionAllocation&& other)
: fd(other.fd)
{
// Take over the responsibility of tracking to deallocation.
swap(m_description, other.m_description);
}
~ScopedDescriptionAllocation()
{
if (m_description && m_description->is_allocated() && !m_description->is_valid()) {
m_description->deallocate();
}
}
const int fd { -1 };
private:
OpenFileDescriptionAndFlags* m_description { nullptr };
};
class ProcessProcFSTraits : public ProcFSExposedComponent {
public:
static ErrorOr<NonnullRefPtr<ProcessProcFSTraits>> try_create(Badge<Process>, Process& process)
{
return adopt_nonnull_ref_or_enomem(new (nothrow) ProcessProcFSTraits(process));
}
virtual InodeIndex component_index() const override;
virtual ErrorOr<NonnullRefPtr<Inode>> to_inode(const ProcFS& procfs_instance) const override;
virtual ErrorOr<void> traverse_as_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)>) const override;
virtual mode_t required_mode() const override { return 0555; }
virtual UserID owner_user() const override;
virtual GroupID owner_group() const override;
private:
explicit ProcessProcFSTraits(Process& process)
: m_process(process.make_weak_ptr())
{
}
// NOTE: We need to weakly hold on to the process, because otherwise
// we would be creating a reference cycle.
WeakPtr<Process> m_process;
};
OpenFileDescriptions& fds() { return m_fds; }
const OpenFileDescriptions& fds() const { return m_fds; }
private:
SpinlockProtected<Thread::ListInProcess>& thread_list() { return m_thread_list; }
SpinlockProtected<Thread::ListInProcess> const& thread_list() const { return m_thread_list; }
SpinlockProtected<Thread::ListInProcess> m_thread_list;
OpenFileDescriptions m_fds;
const bool m_is_kernel_process;
Atomic<State> m_state { State::Running };
bool m_profiling { false };
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
bool m_should_generate_coredump { false };
RefPtr<Custody> m_executable;
RefPtr<Custody> m_cwd;
NonnullOwnPtrVector<KString> m_arguments;
NonnullOwnPtrVector<KString> m_environment;
RefPtr<TTY> m_tty;
WeakPtr<Memory::Region> m_master_tls_region;
size_t m_master_tls_size { 0 };
size_t m_master_tls_alignment { 0 };
Mutex m_big_lock { "Process" };
Mutex m_ptrace_lock { "ptrace" };
RefPtr<Timer> m_alarm_timer;
VeilState m_veil_state { VeilState::None };
UnveilNode m_unveiled_paths { "/", { .full_path = "/" } };
OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
FutexQueues m_futex_queues;
Spinlock m_futex_lock;
// This member is used in the implementation of ptrace's PT_TRACEME flag.
// If it is set to true, the process will stop at the next execve syscall
// and wait for a tracer to attach.
bool m_wait_for_tracer_at_next_execve { false };
Thread::WaitBlockerSet m_wait_blocker_set;
struct CoredumpProperty {
OwnPtr<KString> key;
OwnPtr<KString> value;
};
Array<CoredumpProperty, 4> m_coredump_properties;
NonnullRefPtrVector<Thread> m_threads_for_coredump;
mutable RefPtr<ProcessProcFSTraits> m_procfs_traits;
static_assert(sizeof(ProtectedValues) < (PAGE_SIZE));
alignas(4096) ProtectedValues m_protected_values;
u8 m_protected_values_padding[PAGE_SIZE - sizeof(ProtectedValues)];
public:
using List = IntrusiveListRelaxedConst<&Process::m_list_node>;
};
// Note: Process object should be 2 pages of 4096 bytes each.
// It's not expected that the Process object will expand further because the first
// page is used for all unprotected values (which should be plenty of space for them).
// The second page is being used exclusively for write-protected values.
static_assert(AssertSize<Process, (PAGE_SIZE * 2)>());
extern RecursiveSpinlock g_profiling_lock;
SpinlockProtected<Process::List>& processes();
template<IteratorFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
VERIFY_INTERRUPTS_DISABLED();
processes().with([&](const auto& list) {
for (auto it = list.begin(); it != list.end();) {
auto& process = *it;
++it;
if (callback(process) == IterationDecision::Break)
break;
}
});
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
ProcessID my_pid = pid();
processes().with([&](const auto& list) {
for (auto it = list.begin(); it != list.end();) {
auto& process = *it;
++it;
if (process.ppid() == my_pid || process.has_tracee_thread(pid())) {
if (callback(process) == IterationDecision::Break)
break;
}
}
});
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
return thread_list().with([&](auto& thread_list) -> IterationDecision {
for (auto& thread : thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
return thread_list().with([&](auto& thread_list) -> IterationDecision {
for (auto& thread : thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
processes().with([&](const auto& list) {
for (auto it = list.begin(); it != list.end();) {
auto& process = *it;
++it;
if (!process.is_dead() && process.pgid() == pgid) {
if (callback(process) == IterationDecision::Break)
break;
}
}
});
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
return for_each([&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
return for_each_child([&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
thread_list().with([&](auto& thread_list) {
for (auto& thread : thread_list)
callback(thread);
});
return IterationDecision::Continue;
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
thread_list().with([&](auto& thread_list) {
for (auto& thread : thread_list)
callback(thread);
});
return IterationDecision::Continue;
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
return for_each_in_pgrp(pgid, [&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
inline bool InodeMetadata::may_read(const Process& process) const
{
return may_read(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_write(const Process& process) const
{
return may_write(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_execute(const Process& process) const
{
return may_execute(process.euid(), process.egid(), process.extra_gids());
}
inline ProcessID Thread::pid() const
{
return m_process->pid();
}
#define REQUIRE_PROMISE(promise) \
do { \
Process::current().require_promise(Pledge::promise); \
} while (0)
#define REQUIRE_NO_PROMISES \
do { \
Process::current().require_no_promises(); \
} while (0)
}
#define VERIFY_PROCESS_BIG_LOCK_ACQUIRED(process) \
VERIFY(process->big_lock().is_locked_by_current_thread());
#define VERIFY_NO_PROCESS_BIG_LOCK(process) \
VERIFY(!process->big_lock().is_locked_by_current_thread());
inline static ErrorOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string)
{
Userspace<char const*> characters((FlatPtr)string.characters);
return try_copy_kstring_from_user(characters, string.length);
}
template<>
struct AK::Formatter<Kernel::Process> : AK::Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Kernel::Process const& value)
{
return AK::Formatter<FormatString>::format(builder, "{}({})", value.name(), value.pid().value());
}
};