mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-12-27 13:11:46 +03:00
98058f7efe
The log base 2 is implemented using the binary logarithm algorithm by Clay Turner (see the link in the comment)
387 lines
10 KiB
C++
387 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Concepts.h>
|
|
#include <AK/Format.h>
|
|
#include <AK/IntegralMath.h>
|
|
#include <AK/Math.h>
|
|
#include <AK/NumericLimits.h>
|
|
#include <AK/Types.h>
|
|
|
|
namespace AK {
|
|
|
|
// FIXME: this always uses round to nearest break-tie to even
|
|
// FIXME: use the Integral concept to constrain Underlying
|
|
template<size_t precision, typename Underlying>
|
|
class FixedPoint {
|
|
using This = FixedPoint<precision, Underlying>;
|
|
constexpr static Underlying radix_mask = (static_cast<Underlying>(1) << precision) - 1;
|
|
|
|
template<size_t P, typename U>
|
|
friend class FixedPoint;
|
|
|
|
public:
|
|
constexpr FixedPoint() = default;
|
|
template<Integral I>
|
|
constexpr FixedPoint(I value)
|
|
: m_value(static_cast<Underlying>(value) << precision)
|
|
{
|
|
}
|
|
|
|
template<FloatingPoint F>
|
|
constexpr FixedPoint(F value)
|
|
: m_value(static_cast<Underlying>(value * (static_cast<Underlying>(1) << precision)))
|
|
{
|
|
}
|
|
|
|
template<size_t P, typename U>
|
|
explicit constexpr FixedPoint(FixedPoint<P, U> const& other)
|
|
: m_value(other.template cast_to<precision, Underlying>().m_value)
|
|
{
|
|
}
|
|
|
|
template<FloatingPoint F>
|
|
explicit ALWAYS_INLINE operator F() const
|
|
{
|
|
return (F)m_value * pow<F>(0.5, precision);
|
|
}
|
|
template<Integral I>
|
|
explicit constexpr operator I() const
|
|
{
|
|
I value = m_value >> precision;
|
|
// fract(m_value) >= .5?
|
|
if (m_value & (1u << (precision - 1))) {
|
|
// fract(m_value) > .5?
|
|
if (m_value & (radix_mask >> 2u)) {
|
|
// yes: round "up";
|
|
value += (m_value > 0 ? 1 : -1);
|
|
} else {
|
|
// no: round to even;
|
|
value += value & 1;
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
constexpr Underlying raw() const
|
|
{
|
|
return m_value;
|
|
}
|
|
constexpr Underlying& raw()
|
|
{
|
|
return m_value;
|
|
}
|
|
|
|
constexpr This fract() const
|
|
{
|
|
return create_raw(m_value & radix_mask);
|
|
}
|
|
|
|
constexpr This round() const
|
|
{
|
|
return This { static_cast<Underlying>(*this) };
|
|
}
|
|
constexpr This floor() const
|
|
{
|
|
return create_raw(m_value & ~radix_mask);
|
|
}
|
|
constexpr This ceil() const
|
|
{
|
|
return create_raw((m_value & ~radix_mask)
|
|
+ (m_value & radix_mask ? 1 << precision : 0));
|
|
}
|
|
constexpr This trunk() const
|
|
{
|
|
return create_raw((m_value & ~radix_mask)
|
|
+ ((m_value & radix_mask)
|
|
? (m_value > 0 ? 0 : (1 << precision))
|
|
: 0));
|
|
}
|
|
|
|
constexpr Underlying lround() const { return static_cast<Underlying>(*this); }
|
|
constexpr Underlying lfloor() const { return m_value >> precision; }
|
|
constexpr Underlying lceil() const
|
|
{
|
|
return (m_value >> precision)
|
|
+ (m_value & radix_mask ? 1 : 0);
|
|
}
|
|
constexpr Underlying ltrunk() const
|
|
{
|
|
return (m_value >> precision)
|
|
+ ((m_value & radix_mask)
|
|
? m_value > 0 ? 0 : 1
|
|
: 0);
|
|
}
|
|
|
|
// http://www.claysturner.com/dsp/BinaryLogarithm.pdf
|
|
constexpr This log2() const
|
|
{
|
|
// 0.5
|
|
This b = create_raw(1 << (precision - 1));
|
|
This y = 0;
|
|
This x = *this;
|
|
|
|
// FIXME: There's no negative infinity.
|
|
if (x.raw() <= 0)
|
|
return create_raw(NumericLimits<Underlying>::min());
|
|
|
|
if (x != 1) {
|
|
i32 shift_amount = AK::log2<Underlying>(x.raw()) - precision;
|
|
if (shift_amount > 0)
|
|
x >>= shift_amount;
|
|
else
|
|
x <<= -shift_amount;
|
|
y += shift_amount;
|
|
}
|
|
|
|
for (size_t i = 0; i < precision; ++i) {
|
|
x *= x;
|
|
if (x >= 2) {
|
|
x >>= 1;
|
|
y += b;
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
constexpr bool signbit() const requires(IsSigned<Underlying>)
|
|
{
|
|
return m_value >> (sizeof(Underlying) * 8 - 1);
|
|
}
|
|
|
|
constexpr This operator-() const requires(IsSigned<Underlying>)
|
|
{
|
|
return create_raw(-m_value);
|
|
}
|
|
|
|
constexpr This operator+(This const& other) const
|
|
{
|
|
return create_raw(m_value + other.m_value);
|
|
}
|
|
constexpr This operator-(This const& other) const
|
|
{
|
|
return create_raw(m_value - other.m_value);
|
|
}
|
|
constexpr This operator*(This const& other) const
|
|
{
|
|
// FIXME: Potential Overflow, although result could be represented accurately
|
|
Underlying value = m_value * other.raw();
|
|
This ret {};
|
|
ret.raw() = value >> precision;
|
|
// fract(value) >= .5?
|
|
if (value & (1u << (precision - 1))) {
|
|
// fract(value) > .5?
|
|
if (value & (radix_mask >> 2u)) {
|
|
// yes: round up;
|
|
ret.raw() += (value > 0 ? 1 : -1);
|
|
} else {
|
|
// no: round to even (aka unset last sigificant bit);
|
|
ret.raw() += m_value & 1;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
constexpr This operator/(This const& other) const
|
|
{
|
|
// FIXME: Better rounding?
|
|
return create_raw((m_value / other.m_value) << (precision));
|
|
}
|
|
|
|
template<Integral I>
|
|
constexpr This operator+(I other) const
|
|
{
|
|
return create_raw(m_value + (other << precision));
|
|
}
|
|
template<Integral I>
|
|
constexpr This operator-(I other) const
|
|
{
|
|
return create_raw(m_value - (other << precision));
|
|
}
|
|
template<Integral I>
|
|
constexpr This operator*(I other) const
|
|
{
|
|
return create_raw(m_value * other);
|
|
}
|
|
template<Integral I>
|
|
constexpr This operator/(I other) const
|
|
{
|
|
return create_raw(m_value / other);
|
|
}
|
|
template<Integral I>
|
|
constexpr This operator>>(I other) const
|
|
{
|
|
return create_raw(m_value >> other);
|
|
}
|
|
template<Integral I>
|
|
constexpr This operator<<(I other) const
|
|
{
|
|
return create_raw(m_value << other);
|
|
}
|
|
|
|
This& operator+=(This const& other)
|
|
{
|
|
m_value += other.raw();
|
|
return *this;
|
|
}
|
|
This& operator-=(This const& other)
|
|
{
|
|
m_value -= other.raw();
|
|
return *this;
|
|
}
|
|
This& operator*=(This const& other)
|
|
{
|
|
Underlying value = m_value * other.raw();
|
|
m_value = value >> precision;
|
|
// fract(value) >= .5?
|
|
if (value & (1u << (precision - 1))) {
|
|
// fract(value) > .5?
|
|
if (value & (radix_mask >> 2u)) {
|
|
// yes: round up;
|
|
m_value += (value > 0 ? 1 : -1);
|
|
} else {
|
|
// no: round to even (aka unset last sigificant bit);
|
|
m_value += m_value & 1;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
This& operator/=(This const& other)
|
|
{
|
|
// FIXME: See above
|
|
m_value /= other.raw();
|
|
m_value <<= precision;
|
|
return *this;
|
|
}
|
|
|
|
template<Integral I>
|
|
This& operator+=(I other)
|
|
{
|
|
m_value += other << precision;
|
|
return *this;
|
|
}
|
|
template<Integral I>
|
|
This& operator-=(I other)
|
|
{
|
|
m_value -= other << precision;
|
|
return *this;
|
|
}
|
|
template<Integral I>
|
|
This& operator*=(I other)
|
|
{
|
|
m_value *= other;
|
|
return *this;
|
|
}
|
|
template<Integral I>
|
|
This& operator/=(I other)
|
|
{
|
|
m_value /= other;
|
|
return *this;
|
|
}
|
|
template<Integral I>
|
|
This& operator>>=(I other)
|
|
{
|
|
m_value >>= other;
|
|
return *this;
|
|
}
|
|
template<Integral I>
|
|
This& operator<<=(I other)
|
|
{
|
|
m_value <<= other;
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(This const& other) const { return raw() == other.raw(); }
|
|
bool operator!=(This const& other) const { return raw() != other.raw(); }
|
|
bool operator>(This const& other) const { return raw() > other.raw(); }
|
|
bool operator>=(This const& other) const { return raw() >= other.raw(); }
|
|
bool operator<(This const& other) const { return raw() < other.raw(); }
|
|
bool operator<=(This const& other) const { return raw() <= other.raw(); }
|
|
|
|
// FIXE: There are probably better ways to do these
|
|
template<Integral I>
|
|
bool operator==(I other) const
|
|
{
|
|
return m_value >> precision == other && !(m_value & radix_mask);
|
|
}
|
|
template<Integral I>
|
|
bool operator!=(I other) const
|
|
{
|
|
return (m_value >> precision) != other || m_value & radix_mask;
|
|
}
|
|
template<Integral I>
|
|
bool operator>(I other) const
|
|
{
|
|
return !(*this <= other);
|
|
}
|
|
template<Integral I>
|
|
bool operator>=(I other) const
|
|
{
|
|
return !(*this < other);
|
|
}
|
|
template<Integral I>
|
|
bool operator<(I other) const
|
|
{
|
|
return (m_value >> precision) < other || m_value < (other << precision);
|
|
}
|
|
template<Integral I>
|
|
bool operator<=(I other) const
|
|
{
|
|
return *this < other || *this == other;
|
|
}
|
|
|
|
// Casting from a float should be faster than casting to a float
|
|
template<FloatingPoint F>
|
|
bool operator==(F other) const { return *this == (This)other; }
|
|
template<FloatingPoint F>
|
|
bool operator!=(F other) const { return *this != (This)other; }
|
|
template<FloatingPoint F>
|
|
bool operator>(F other) const { return *this > (This)other; }
|
|
template<FloatingPoint F>
|
|
bool operator>=(F other) const { return *this >= (This)other; }
|
|
template<FloatingPoint F>
|
|
bool operator<(F other) const { return *this < (This)other; }
|
|
template<FloatingPoint F>
|
|
bool operator<=(F other) const { return *this <= (This)other; }
|
|
|
|
template<size_t P, typename U>
|
|
operator FixedPoint<P, U>() const
|
|
{
|
|
return cast_to<P, U>();
|
|
}
|
|
|
|
private:
|
|
template<size_t P, typename U>
|
|
constexpr FixedPoint<P, U> cast_to() const
|
|
{
|
|
U raw_value = static_cast<U>(m_value >> precision) << P;
|
|
if constexpr (precision > P)
|
|
raw_value |= (m_value & radix_mask) >> (precision - P);
|
|
else if constexpr (precision < P)
|
|
raw_value |= static_cast<U>(m_value & radix_mask) << (P - precision);
|
|
else
|
|
raw_value |= m_value & radix_mask;
|
|
|
|
return FixedPoint<P, U>::create_raw(raw_value);
|
|
}
|
|
|
|
static This create_raw(Underlying value)
|
|
{
|
|
This t {};
|
|
t.raw() = value;
|
|
return t;
|
|
}
|
|
|
|
Underlying m_value;
|
|
};
|
|
|
|
}
|
|
|
|
using AK::FixedPoint;
|