ladybird/Kernel/init.cpp
Tom 20cccda731 Kernel: Add simplistic work queues
We can't use deferred functions for anything that may require preemption,
such as copying from/to user or accessing the disk. For those purposes
we should use a work queue, which is essentially a kernel thread that
may be preempted or blocked.
2021-03-21 13:41:09 +01:00

359 lines
12 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Types.h>
#include <Kernel/ACPI/DynamicParser.h>
#include <Kernel/ACPI/Initialize.h>
#include <Kernel/ACPI/MultiProcessorParser.h>
#include <Kernel/Arch/x86/CPU.h>
#include <Kernel/CMOS.h>
#include <Kernel/CommandLine.h>
#include <Kernel/DMI.h>
#include <Kernel/Devices/BXVGADevice.h>
#include <Kernel/Devices/FullDevice.h>
#include <Kernel/Devices/I8042Controller.h>
#include <Kernel/Devices/MBVGADevice.h>
#include <Kernel/Devices/MemoryDevice.h>
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/Devices/RandomDevice.h>
#include <Kernel/Devices/SB16.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Devices/USB/UHCIController.h>
#include <Kernel/Devices/VMWareBackdoor.h>
#include <Kernel/Devices/ZeroDevice.h>
#include <Kernel/FileSystem/Ext2FileSystem.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/InterruptManagement.h>
#include <Kernel/Interrupts/PIC.h>
#include <Kernel/KSyms.h>
#include <Kernel/Multiboot.h>
#include <Kernel/Net/E1000NetworkAdapter.h>
#include <Kernel/Net/LoopbackAdapter.h>
#include <Kernel/Net/NE2000NetworkAdapter.h>
#include <Kernel/Net/NetworkTask.h>
#include <Kernel/Net/RTL8139NetworkAdapter.h>
#include <Kernel/PCI/Access.h>
#include <Kernel/PCI/Initializer.h>
#include <Kernel/Panic.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/Random.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Storage/StorageManagement.h>
#include <Kernel/TTY/PTYMultiplexer.h>
#include <Kernel/TTY/VirtualConsole.h>
#include <Kernel/Tasks/FinalizerTask.h>
#include <Kernel/Tasks/SyncTask.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/WorkQueue.h>
#include <Kernel/kstdio.h>
// Defined in the linker script
typedef void (*ctor_func_t)();
extern ctor_func_t start_heap_ctors;
extern ctor_func_t end_heap_ctors;
extern ctor_func_t start_ctors;
extern ctor_func_t end_ctors;
extern u32 __stack_chk_guard;
u32 __stack_chk_guard;
extern "C" u8* start_of_safemem_text;
extern "C" u8* end_of_safemem_text;
extern "C" u8* start_of_safemem_atomic_text;
extern "C" u8* end_of_safemem_atomic_text;
extern "C" FlatPtr end_of_kernel_image;
multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
size_t multiboot_copy_boot_modules_count;
extern "C" const char kernel_cmdline[4096];
namespace Kernel {
[[noreturn]] static void init_stage2(void*);
static void setup_serial_debug();
// boot.S expects these functions to exactly have the following signatures.
// We declare them here to ensure their signatures don't accidentally change.
extern "C" void init_finished(u32 cpu);
extern "C" [[noreturn]] void init_ap(u32 cpu, Processor* processor_info);
extern "C" [[noreturn]] void init();
READONLY_AFTER_INIT VirtualConsole* tty0;
static Processor s_bsp_processor; // global but let's keep it "private"
// SerenityOS Kernel C++ entry point :^)
//
// This is where C++ execution begins, after boot.S transfers control here.
//
// The purpose of init() is to start multi-tasking. It does the bare minimum
// amount of work needed to start the scheduler.
//
// Once multi-tasking is ready, we spawn a new thread that starts in the
// init_stage2() function. Initialization continues there.
extern "C" UNMAP_AFTER_INIT [[noreturn]] void init()
{
if ((FlatPtr)&end_of_kernel_image >= 0xc1000000u) {
// The kernel has grown too large again!
asm volatile("cli;hlt");
}
setup_serial_debug();
// We need to copy the command line before kmalloc is initialized,
// as it may overwrite parts of multiboot!
CommandLine::early_initialize(kernel_cmdline);
memcpy(multiboot_copy_boot_modules_array, (u8*)low_physical_to_virtual(multiboot_info_ptr->mods_addr), multiboot_info_ptr->mods_count * sizeof(multiboot_module_entry_t));
multiboot_copy_boot_modules_count = multiboot_info_ptr->mods_count;
s_bsp_processor.early_initialize(0);
// Invoke the constructors needed for the kernel heap
for (ctor_func_t* ctor = &start_heap_ctors; ctor < &end_heap_ctors; ctor++)
(*ctor)();
kmalloc_init();
slab_alloc_init();
s_bsp_processor.initialize(0);
CommandLine::initialize();
MemoryManager::initialize(0);
// Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
VERIFY(&start_of_safemem_text != &end_of_safemem_text);
VERIFY(&start_of_safemem_atomic_text != &end_of_safemem_atomic_text);
// Invoke all static global constructors in the kernel.
// Note that we want to do this as early as possible.
for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++)
(*ctor)();
APIC::initialize();
InterruptManagement::initialize();
ACPI::initialize();
VFS::initialize();
I8042Controller::initialize();
Console::initialize();
dmesgln("Starting SerenityOS...");
TimeManagement::initialize(0);
__stack_chk_guard = get_fast_random<u32>();
NullDevice::initialize();
if (!get_serial_debug())
new SerialDevice(SERIAL_COM1_ADDR, 64);
new SerialDevice(SERIAL_COM2_ADDR, 65);
new SerialDevice(SERIAL_COM3_ADDR, 66);
new SerialDevice(SERIAL_COM4_ADDR, 67);
VirtualConsole::initialize();
tty0 = new VirtualConsole(0);
for (unsigned i = 1; i < s_max_virtual_consoles; i++) {
new VirtualConsole(i);
}
VirtualConsole::switch_to(0);
Thread::initialize();
Process::initialize();
Scheduler::initialize();
WorkQueue::initialize();
{
RefPtr<Thread> init_stage2_thread;
Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2, nullptr);
// We need to make sure we drop the reference for init_stage2_thread
// before calling into Scheduler::start, otherwise we will have a
// dangling Thread that never gets cleaned up
}
Scheduler::start();
VERIFY_NOT_REACHED();
}
//
// This is where C++ execution begins for APs, after boot.S transfers control here.
//
// The purpose of init_ap() is to initialize APs for multi-tasking.
//
extern "C" UNMAP_AFTER_INIT [[noreturn]] void init_ap(u32 cpu, Processor* processor_info)
{
processor_info->early_initialize(cpu);
processor_info->initialize(cpu);
MemoryManager::initialize(cpu);
Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
Scheduler::start();
VERIFY_NOT_REACHED();
}
//
// This method is called once a CPU enters the scheduler and its idle thread
// At this point the initial boot stack can be freed
//
extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
{
if (cpu == 0) {
// TODO: we can reuse the boot stack, maybe for kmalloc()?
} else {
APIC::the().init_finished(cpu);
TimeManagement::initialize(cpu);
}
}
void init_stage2(void*)
{
if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
// We can't start the APs until we have a scheduler up and running.
// We need to be able to process ICI messages, otherwise another
// core may send too many and end up deadlocking once the pool is
// exhausted
APIC::the().boot_aps();
}
SyncTask::spawn();
FinalizerTask::spawn();
PCI::initialize();
auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
auto is_text_mode = kernel_command_line().is_text_mode();
if (is_text_mode) {
dbgln("Text mode enabled");
} else {
bool bxvga_found = false;
PCI::enumerate([&](const PCI::Address&, PCI::ID id) {
if ((id.vendor_id == 0x1234 && id.device_id == 0x1111) || (id.vendor_id == 0x80ee && id.device_id == 0xbeef))
bxvga_found = true;
});
if (bxvga_found) {
BXVGADevice::initialize();
} else {
if (multiboot_info_ptr->framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB || multiboot_info_ptr->framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_EGA_TEXT) {
new MBVGADevice(
PhysicalAddress((u32)(multiboot_info_ptr->framebuffer_addr)),
multiboot_info_ptr->framebuffer_pitch,
multiboot_info_ptr->framebuffer_width,
multiboot_info_ptr->framebuffer_height);
} else {
BXVGADevice::initialize();
}
}
}
// FIXME: This should not be i386-specific.
USB::UHCIController::detect();
DMIExpose::initialize();
E1000NetworkAdapter::detect();
NE2000NetworkAdapter::detect();
RTL8139NetworkAdapter::detect();
LoopbackAdapter::the();
Syscall::initialize();
new MemoryDevice;
new ZeroDevice;
new FullDevice;
new RandomDevice;
PTYMultiplexer::initialize();
SB16::detect();
VMWareBackdoor::the(); // don't wait until first mouse packet
StorageManagement::initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio());
if (!VFS::the().mount_root(StorageManagement::the().root_filesystem())) {
PANIC("VFS::mount_root failed");
}
Process::current()->set_root_directory(VFS::the().root_custody());
load_kernel_symbol_table();
// NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
MM.protect_readonly_after_init_memory();
// NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
MM.unmap_memory_after_init();
int error;
// FIXME: It would be nicer to set the mode from userspace.
tty0->set_graphical(!is_text_mode);
RefPtr<Thread> thread;
auto userspace_init = kernel_command_line().userspace_init();
auto init_args = kernel_command_line().userspace_init_args();
Process::create_user_process(thread, userspace_init, (uid_t)0, (gid_t)0, ProcessID(0), error, move(init_args), {}, tty0);
if (error != 0) {
PANIC("init_stage2: Error spawning SystemServer: {}", error);
}
thread->set_priority(THREAD_PRIORITY_HIGH);
if (boot_profiling) {
dbgln("Starting full system boot profiling");
auto result = Process::current()->sys$profiling_enable(-1);
VERIFY(!result.is_error());
}
NetworkTask::spawn();
Process::current()->sys$exit(0);
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT void setup_serial_debug()
{
// serial_debug will output all the dbgln() data to COM1 at
// 8-N-1 57600 baud. this is particularly useful for debugging the boot
// process on live hardware.
if (StringView(kernel_cmdline).contains("serial_debug")) {
set_serial_debug(true);
}
}
extern "C" {
multiboot_info_t* multiboot_info_ptr;
}
// Define some Itanium C++ ABI methods to stop the linker from complaining.
// If we actually call these something has gone horribly wrong
void* __dso_handle __attribute__((visibility("hidden")));
}