ladybird/Kernel/VM/MemoryManager.cpp
Andreas Kling 7c3b6b10e4 Kernel: Remove the limited use of AK::TypeTraits we had in the kernel
This was only used for VMObject and we can do without it there. This is
preparation for migrating to dynamic_cast-based helpers in userspace.
2021-01-01 15:32:44 +01:00

834 lines
32 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Assertions.h>
#include <AK/Memory.h>
#include <AK/StringView.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/CMOS.h>
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Multiboot.h>
#include <Kernel/Process.h>
#include <Kernel/StdLib.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/ContiguousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/PhysicalRegion.h>
#include <Kernel/VM/PurgeableVMObject.h>
#include <Kernel/VM/SharedInodeVMObject.h>
//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG
extern u8* start_of_kernel_image;
extern u8* end_of_kernel_image;
extern FlatPtr start_of_kernel_text;
extern FlatPtr start_of_kernel_data;
extern FlatPtr end_of_kernel_bss;
namespace Kernel {
// NOTE: We can NOT use AK::Singleton for this class, because
// MemoryManager::initialize is called *before* global constructors are
// run. If we do, then AK::Singleton would get re-initialized, causing
// the memory manager to be initialized twice!
static MemoryManager* s_the;
RecursiveSpinLock s_mm_lock;
MemoryManager& MM
{
return *s_the;
}
bool MemoryManager::is_initialized()
{
return s_the != nullptr;
}
MemoryManager::MemoryManager()
{
ScopedSpinLock lock(s_mm_lock);
m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
parse_memory_map();
write_cr3(kernel_page_directory().cr3());
protect_kernel_image();
m_shared_zero_page = allocate_user_physical_page();
}
MemoryManager::~MemoryManager()
{
}
void MemoryManager::protect_kernel_image()
{
ScopedSpinLock page_lock(kernel_page_directory().get_lock());
// Disable writing to the kernel text and rodata segments.
for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_writable(false);
}
if (Processor::current().has_feature(CPUFeature::NX)) {
// Disable execution of the kernel data and bss segments, as well as the kernel heap.
for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_execute_disabled(true);
}
for (size_t i = FlatPtr(kmalloc_start); i < FlatPtr(kmalloc_end); i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_execute_disabled(true);
}
}
}
void MemoryManager::parse_memory_map()
{
RefPtr<PhysicalRegion> region;
bool region_is_super = false;
// We need to make sure we exclude the kmalloc range as well as the kernel image.
// The kmalloc range directly follows the kernel image
const PhysicalAddress used_range_start(virtual_to_low_physical(FlatPtr(&start_of_kernel_image)));
const PhysicalAddress used_range_end(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(kmalloc_end))));
klog() << "MM: kernel range: " << used_range_start << " - " << PhysicalAddress(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(&end_of_kernel_image))));
klog() << "MM: kmalloc range: " << PhysicalAddress(virtual_to_low_physical(FlatPtr(kmalloc_start))) << " - " << used_range_end;
auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
continue;
// FIXME: Maybe make use of stuff below the 1MiB mark?
if (mmap->addr < (1 * MiB))
continue;
if ((mmap->addr + mmap->len) > 0xffffffff)
continue;
auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
if (diff != 0) {
klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
diff = PAGE_SIZE - diff;
mmap->addr += diff;
mmap->len -= diff;
}
if ((mmap->len % PAGE_SIZE) != 0) {
klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
mmap->len -= mmap->len % PAGE_SIZE;
}
if (mmap->len < PAGE_SIZE) {
klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
continue;
}
#ifdef MM_DEBUG
klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
#endif
for (size_t page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
auto addr = PhysicalAddress(page_base);
if (addr.get() < used_range_end.get() && addr.get() >= used_range_start.get())
continue;
if (page_base < 7 * MiB) {
// nothing
} else if (page_base >= 7 * MiB && page_base < 8 * MiB) {
if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_super_physical_regions.last();
region_is_super = true;
} else {
region->expand(region->lower(), addr);
}
} else {
if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_user_physical_regions.last();
region_is_super = false;
} else {
region->expand(region->lower(), addr);
}
}
}
}
for (auto& region : m_super_physical_regions) {
m_super_physical_pages += region.finalize_capacity();
klog() << "Super physical region: " << region.lower() << " - " << region.upper();
}
for (auto& region : m_user_physical_regions) {
m_user_physical_pages += region.finalize_capacity();
klog() << "User physical region: " << region.lower() << " - " << region.upper();
}
ASSERT(m_super_physical_pages > 0);
ASSERT(m_user_physical_pages > 0);
}
PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(s_mm_lock.own_lock());
ASSERT(page_directory.get_lock().own_lock());
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
const PageDirectoryEntry& pde = pd[page_directory_index];
if (!pde.is_present())
return nullptr;
return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
}
PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(s_mm_lock.own_lock());
ASSERT(page_directory.get_lock().own_lock());
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
auto* pd = quickmap_pd(page_directory, page_directory_table_index);
PageDirectoryEntry& pde = pd[page_directory_index];
if (!pde.is_present()) {
#ifdef MM_DEBUG
dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
#endif
bool did_purge = false;
auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
if (!page_table) {
dbg() << "MM: Unable to allocate page table to map " << vaddr;
return nullptr;
}
if (did_purge) {
// If any memory had to be purged, ensure_pte may have been called as part
// of the purging process. So we need to re-map the pd in this case to ensure
// we're writing to the correct underlying physical page
pd = quickmap_pd(page_directory, page_directory_table_index);
ASSERT(&pde == &pd[page_directory_index]); // Sanity check
ASSERT(!pde.is_present()); // Should have not changed
}
#ifdef MM_DEBUG
dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
#endif
pde.set_page_table_base(page_table->paddr().get());
pde.set_user_allowed(true);
pde.set_present(true);
pde.set_writable(true);
pde.set_global(&page_directory == m_kernel_page_directory.ptr());
// Use page_directory_table_index and page_directory_index as key
// This allows us to release the page table entry when no longer needed
auto result = page_directory.m_page_tables.set(vaddr.get() & ~0x1fffff, move(page_table));
ASSERT(result == AK::HashSetResult::InsertedNewEntry);
}
return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
}
void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(s_mm_lock.own_lock());
ASSERT(page_directory.get_lock().own_lock());
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
auto* pd = quickmap_pd(page_directory, page_directory_table_index);
PageDirectoryEntry& pde = pd[page_directory_index];
if (pde.is_present()) {
auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
auto& pte = page_table[page_table_index];
pte.clear();
if (is_last_release || page_table_index == 0x1ff) {
// If this is the last PTE in a region or the last PTE in a page table then
// check if we can also release the page table
bool all_clear = true;
for (u32 i = 0; i <= 0x1ff; i++) {
if (!page_table[i].is_null()) {
all_clear = false;
break;
}
}
if (all_clear) {
pde.clear();
auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
ASSERT(result);
#ifdef MM_DEBUG
dbg() << "MM: Released page table for " << VirtualAddress(vaddr.get() & ~0x1fffff);
#endif
}
}
}
}
void MemoryManager::initialize(u32 cpu)
{
auto mm_data = new MemoryManagerData;
#ifdef MM_DEBUG
dbg() << "MM: Processor #" << cpu << " specific data at " << VirtualAddress(mm_data);
#endif
Processor::current().set_mm_data(*mm_data);
if (cpu == 0) {
s_the = new MemoryManager;
kmalloc_enable_expand();
}
}
Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
for (auto& region : MM.m_kernel_regions) {
if (region.contains(vaddr))
return &region;
}
return nullptr;
}
Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
for (auto& region : process.m_regions) {
if (region.contains(vaddr))
return &region;
}
#ifdef MM_DEBUG
dbg() << process << " Couldn't find user region for " << vaddr;
#endif
return nullptr;
}
Region* MemoryManager::find_region_from_vaddr(Process& process, VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
if (auto* region = user_region_from_vaddr(process, vaddr))
return region;
return kernel_region_from_vaddr(vaddr);
}
const Region* MemoryManager::find_region_from_vaddr(const Process& process, VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
if (auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr))
return region;
return kernel_region_from_vaddr(vaddr);
}
Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
if (auto* region = kernel_region_from_vaddr(vaddr))
return region;
auto page_directory = PageDirectory::find_by_cr3(read_cr3());
if (!page_directory)
return nullptr;
ASSERT(page_directory->process());
return user_region_from_vaddr(*page_directory->process(), vaddr);
}
PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Thread::current() != nullptr);
ScopedSpinLock lock(s_mm_lock);
if (Processor::current().in_irq()) {
dbg() << "CPU[" << Processor::current().id() << "] BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr() << ", irq level: " << Processor::current().in_irq();
dump_kernel_regions();
return PageFaultResponse::ShouldCrash;
}
#ifdef PAGE_FAULT_DEBUG
dbgln("MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current().id(), fault.code(), fault.vaddr());
#endif
auto* region = find_region_from_vaddr(fault.vaddr());
if (!region) {
klog() << "CPU[" << Processor::current().id() << "] NP(error) fault at invalid address " << fault.vaddr();
return PageFaultResponse::ShouldCrash;
}
return region->handle_fault(fault);
}
OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
if (!range.is_valid())
return nullptr;
auto vmobject = ContiguousVMObject::create_with_size(size);
auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
if (!region)
return nullptr;
return region;
}
OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
if (!range.is_valid())
return nullptr;
auto vmobject = AnonymousVMObject::create_with_size(size);
auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
if (!region)
return nullptr;
if (should_commit && !region->commit())
return nullptr;
return region;
}
OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
if (!range.is_valid())
return nullptr;
auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
if (!vmobject)
return nullptr;
return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
}
OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
if (!range.is_valid())
return nullptr;
auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
if (!vmobject)
return nullptr;
return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
}
OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
{
return allocate_kernel_region(size, name, access, true, true, cacheable);
}
OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ScopedSpinLock lock(s_mm_lock);
OwnPtr<Region> region;
if (user_accessible)
region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
else
region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
if (region)
region->map(kernel_page_directory());
return region;
}
OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
if (!range.is_valid())
return nullptr;
return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
}
void MemoryManager::deallocate_user_physical_page(const PhysicalPage& page)
{
ScopedSpinLock lock(s_mm_lock);
for (auto& region : m_user_physical_regions) {
if (!region.contains(page)) {
klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
continue;
}
region.return_page(page);
--m_user_physical_pages_used;
return;
}
klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
ASSERT_NOT_REACHED();
}
RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
{
ASSERT(s_mm_lock.is_locked());
RefPtr<PhysicalPage> page;
for (auto& region : m_user_physical_regions) {
page = region.take_free_page(false);
if (!page.is_null())
break;
}
return page;
}
RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
{
ScopedSpinLock lock(s_mm_lock);
auto page = find_free_user_physical_page();
bool purged_pages = false;
if (!page) {
// We didn't have a single free physical page. Let's try to free something up!
// First, we look for a purgeable VMObject in the volatile state.
for_each_vmobject([&](auto& vmobject) {
if (!vmobject.is_purgeable())
return IterationDecision::Continue;
int purged_page_count = static_cast<PurgeableVMObject&>(vmobject).purge_with_interrupts_disabled({});
if (purged_page_count) {
klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &vmobject << "}";
page = find_free_user_physical_page();
purged_pages = true;
ASSERT(page);
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (!page) {
klog() << "MM: no user physical pages available";
return {};
}
}
#ifdef MM_DEBUG
dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
#endif
if (should_zero_fill == ShouldZeroFill::Yes) {
auto* ptr = quickmap_page(*page);
memset(ptr, 0, PAGE_SIZE);
unquickmap_page();
}
if (did_purge)
*did_purge = purged_pages;
++m_user_physical_pages_used;
return page;
}
void MemoryManager::deallocate_supervisor_physical_page(const PhysicalPage& page)
{
ScopedSpinLock lock(s_mm_lock);
for (auto& region : m_super_physical_regions) {
if (!region.contains(page)) {
klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
continue;
}
region.return_page(page);
--m_super_physical_pages_used;
return;
}
klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
ASSERT_NOT_REACHED();
}
NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
size_t count = ceil_div(size, PAGE_SIZE);
NonnullRefPtrVector<PhysicalPage> physical_pages;
for (auto& region : m_super_physical_regions) {
physical_pages = region.take_contiguous_free_pages((count), true);
if (!physical_pages.is_empty())
break;
}
if (physical_pages.is_empty()) {
if (m_super_physical_regions.is_empty()) {
klog() << "MM: no super physical regions available (?)";
}
klog() << "MM: no super physical pages available";
ASSERT_NOT_REACHED();
return {};
}
auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
m_super_physical_pages_used += count;
return physical_pages;
}
RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
{
ScopedSpinLock lock(s_mm_lock);
RefPtr<PhysicalPage> page;
for (auto& region : m_super_physical_regions) {
page = region.take_free_page(true);
if (!page.is_null())
break;
}
if (!page) {
if (m_super_physical_regions.is_empty()) {
klog() << "MM: no super physical regions available (?)";
}
klog() << "MM: no super physical pages available";
ASSERT_NOT_REACHED();
return {};
}
#ifdef MM_DEBUG
dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
#endif
fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
++m_super_physical_pages_used;
return page;
}
void MemoryManager::enter_process_paging_scope(Process& process)
{
auto current_thread = Thread::current();
ASSERT(current_thread != nullptr);
ScopedSpinLock lock(s_mm_lock);
current_thread->tss().cr3 = process.page_directory().cr3();
write_cr3(process.page_directory().cr3());
}
void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
{
#ifdef MM_DEBUG
dbg() << "MM: Flush " << page_count << " pages at " << vaddr << " on CPU#" << Processor::current().id();
#endif
Processor::flush_tlb_local(vaddr, page_count);
}
void MemoryManager::flush_tlb(VirtualAddress vaddr, size_t page_count)
{
#ifdef MM_DEBUG
dbg() << "MM: Flush " << page_count << " pages at " << vaddr;
#endif
Processor::flush_tlb(vaddr, page_count);
}
extern "C" PageTableEntry boot_pd3_pt1023[1024];
PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
{
ASSERT(s_mm_lock.own_lock());
auto& mm_data = get_data();
auto& pte = boot_pd3_pt1023[4];
auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
if (pte.physical_page_base() != pd_paddr.as_ptr()) {
#ifdef MM_DEBUG
dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
#endif
pte.set_physical_page_base(pd_paddr.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
// Because we must continue to hold the MM lock while we use this
// mapping, it is sufficient to only flush on the current CPU. Other
// CPUs trying to use this API must wait on the MM lock anyway
flush_tlb_local(VirtualAddress(0xffe04000));
} else {
// Even though we don't allow this to be called concurrently, it's
// possible that this PD was mapped on a different CPU and we don't
// broadcast the flush. If so, we still need to flush the TLB.
if (mm_data.m_last_quickmap_pd != pd_paddr)
flush_tlb_local(VirtualAddress(0xffe04000));
}
mm_data.m_last_quickmap_pd = pd_paddr;
return (PageDirectoryEntry*)0xffe04000;
}
PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
{
ASSERT(s_mm_lock.own_lock());
auto& mm_data = get_data();
auto& pte = boot_pd3_pt1023[0];
if (pte.physical_page_base() != pt_paddr.as_ptr()) {
#ifdef MM_DEBUG
dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe00000 in pte @ " << &pte;
#endif
pte.set_physical_page_base(pt_paddr.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
// Because we must continue to hold the MM lock while we use this
// mapping, it is sufficient to only flush on the current CPU. Other
// CPUs trying to use this API must wait on the MM lock anyway
flush_tlb_local(VirtualAddress(0xffe00000));
} else {
// Even though we don't allow this to be called concurrently, it's
// possible that this PT was mapped on a different CPU and we don't
// broadcast the flush. If so, we still need to flush the TLB.
if (mm_data.m_last_quickmap_pt != pt_paddr)
flush_tlb_local(VirtualAddress(0xffe00000));
}
mm_data.m_last_quickmap_pt = pt_paddr;
return (PageTableEntry*)0xffe00000;
}
u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
{
ASSERT_INTERRUPTS_DISABLED();
auto& mm_data = get_data();
mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
ScopedSpinLock lock(s_mm_lock);
u32 pte_idx = 8 + Processor::current().id();
VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
auto& pte = boot_pd3_pt1023[pte_idx];
if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
#ifdef MM_DEBUG
dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe08000 in pte @ " << &pte;
#endif
pte.set_physical_page_base(physical_page.paddr().get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb_local(vaddr);
}
return vaddr.as_ptr();
}
void MemoryManager::unquickmap_page()
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(s_mm_lock);
auto& mm_data = get_data();
ASSERT(mm_data.m_quickmap_in_use.is_locked());
u32 pte_idx = 8 + Processor::current().id();
VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
auto& pte = boot_pd3_pt1023[pte_idx];
pte.clear();
flush_tlb_local(vaddr);
mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
}
template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
{
ASSERT(s_mm_lock.is_locked());
ASSERT(size);
if (base_vaddr > base_vaddr.offset(size)) {
dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
return false;
}
VirtualAddress vaddr = base_vaddr.page_base();
VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
if (end_vaddr < vaddr) {
dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
return false;
}
const Region* region = nullptr;
while (vaddr <= end_vaddr) {
if (!region || !region->contains(vaddr)) {
if (space == AccessSpace::Kernel)
region = kernel_region_from_vaddr(vaddr);
if (!region || !region->contains(vaddr))
region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
if (!region
|| (space == AccessSpace::User && !region->is_user_accessible())
|| (access_type == AccessType::Read && !region->is_readable())
|| (access_type == AccessType::Write && !region->is_writable())) {
return false;
}
}
vaddr = region->range().end();
}
return true;
}
bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
{
if (!is_user_address(vaddr))
return false;
ScopedSpinLock lock(s_mm_lock);
auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
return region && region->is_user_accessible() && region->is_stack();
}
void MemoryManager::register_vmobject(VMObject& vmobject)
{
ScopedSpinLock lock(s_mm_lock);
m_vmobjects.append(&vmobject);
}
void MemoryManager::unregister_vmobject(VMObject& vmobject)
{
ScopedSpinLock lock(s_mm_lock);
m_vmobjects.remove(&vmobject);
}
void MemoryManager::register_region(Region& region)
{
ScopedSpinLock lock(s_mm_lock);
if (region.is_kernel())
m_kernel_regions.append(&region);
else
m_user_regions.append(&region);
}
void MemoryManager::unregister_region(Region& region)
{
ScopedSpinLock lock(s_mm_lock);
if (region.is_kernel())
m_kernel_regions.remove(&region);
else
m_user_regions.remove(&region);
}
void MemoryManager::dump_kernel_regions()
{
klog() << "Kernel regions:";
klog() << "BEGIN END SIZE ACCESS NAME";
ScopedSpinLock lock(s_mm_lock);
for (auto& region : MM.m_kernel_regions) {
klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
}
}
}