ladybird/Kernel/ACPI/MultiProcessorParser.cpp
Andreas Kling 7d862dd5fc AK: Reduce header dependency graph of String.h
String.h no longer pulls in StringView.h. We do this by moving a bunch
of String functions out-of-line.
2020-03-23 13:48:44 +01:00

257 lines
14 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/StringView.h>
#include <Kernel/ACPI/MultiProcessorParser.h>
#include <Kernel/VM/MemoryManager.h>
#include <LibBareMetal/StdLib.h>
namespace Kernel {
static MultiProcessorParser* s_parser;
bool MultiProcessorParser::is_initialized()
{
return s_parser != nullptr;
}
void MultiProcessorParser::initialize()
{
if (!MultiProcessorParser::is_initialized())
s_parser = new MultiProcessorParser;
}
MultiProcessorParser::MultiProcessorParser()
: m_floating_pointer(search_floating_pointer())
, m_operable((m_floating_pointer != (FlatPtr) nullptr))
{
if (m_floating_pointer != (FlatPtr) nullptr) {
klog() << "MultiProcessor: Floating Pointer Structure @ " << PhysicalAddress(m_floating_pointer);
parse_floating_pointer_data();
parse_configuration_table();
} else {
klog() << "MultiProcessor: Can't Locate Floating Pointer Structure, disabled.";
}
}
void MultiProcessorParser::parse_floating_pointer_data()
{
auto floating_pointer_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)m_floating_pointer)), PAGE_SIZE * 2, "MultiProcessor Parser Parsing Floating Pointer Structure", Region::Access::Read, false, true);
auto* floating_pointer = (MultiProcessor::FloatingPointer*)floating_pointer_region->vaddr().offset(offset_in_page((u32)m_floating_pointer)).as_ptr();
m_configuration_table = floating_pointer->physical_address_ptr;
m_specification_revision = floating_pointer->specification_revision;
dbg() << "Features " << floating_pointer->feature_info[0] << ", IMCR? " << (floating_pointer->feature_info[0] & (1 << 7));
}
size_t MultiProcessorParser::get_configuration_table_length()
{
auto config_table_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)m_configuration_table)), PAGE_SIZE * 2, "MultiProcessor Parser Getting Configuration Table length", Region::Access::Read, false, true);
auto* config_table = (MultiProcessor::ConfigurationTableHeader*)config_table_region->vaddr().offset(offset_in_page((u32)m_configuration_table)).as_ptr();
return config_table->length;
}
void MultiProcessorParser::parse_configuration_table()
{
m_configuration_table_length = get_configuration_table_length();
auto config_table_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)m_configuration_table)), PAGE_ROUND_UP(m_configuration_table_length), "MultiProcessor Parser Parsing Configuration Table", Region::Access::Read, false, true);
auto* config_table = (MultiProcessor::ConfigurationTableHeader*)config_table_region->vaddr().offset(offset_in_page((u32)m_configuration_table)).as_ptr();
size_t entry_count = config_table->entry_count;
auto* entry = config_table->entries;
auto* p_entry = reinterpret_cast<MultiProcessor::ConfigurationTableHeader*>(m_configuration_table)->entries;
while (entry_count > 0) {
dbg() << "MultiProcessor: Entry Type " << entry->entry_type << " detected.";
switch (entry->entry_type) {
case ((u8)MultiProcessor::ConfigurationTableEntryType::Processor):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Processor;
p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Processor;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::Bus):
m_bus_entries.append((FlatPtr)p_entry);
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Bus;
p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Bus;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::IOAPIC):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IOAPIC;
p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IOAPIC;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::IO_Interrupt_Assignment):
m_io_interrupt_redirection_entries.append((FlatPtr)p_entry);
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IO_Interrupt_Assignment;
p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IO_Interrupt_Assignment;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::Local_Interrupt_Assignment):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Local_Interrupt_Assignment;
p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Local_Interrupt_Assignment;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::SystemAddressSpaceMapping):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::SystemAddressSpaceMapping;
p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::SystemAddressSpaceMapping;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::BusHierarchyDescriptor):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::BusHierarchyDescriptor;
p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::BusHierarchyDescriptor;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::CompatibilityBusAddressSpaceModifier):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::CompatibilityBusAddressSpaceModifier;
p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::CompatibilityBusAddressSpaceModifier;
break;
ASSERT_NOT_REACHED();
}
entry_count--;
}
}
FlatPtr MultiProcessorParser::search_floating_pointer()
{
FlatPtr mp_floating_pointer = (FlatPtr) nullptr;
auto region = MM.allocate_kernel_region(PhysicalAddress(0), PAGE_SIZE, "MultiProcessor Parser Floating Pointer Structure Finding", Region::Access::Read);
u16 ebda_seg = (u16) * ((uint16_t*)((region->vaddr().get() & PAGE_MASK) + 0x40e));
klog() << "MultiProcessor: Probing EBDA, Segment 0x" << String::format("%x", ebda_seg);
mp_floating_pointer = search_floating_pointer_in_ebda(ebda_seg);
if (mp_floating_pointer != (FlatPtr) nullptr)
return mp_floating_pointer;
return search_floating_pointer_in_bios_area();
}
FlatPtr MultiProcessorParser::search_floating_pointer_in_ebda(u16 ebda_segment)
{
auto floating_pointer_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)(ebda_segment << 4))), PAGE_ROUND_UP(1024), "MultiProcessor Parser floating_pointer Finding #1", Region::Access::Read, false, true);
char* p_floating_pointer_str = (char*)(PhysicalAddress(ebda_segment << 4).as_ptr());
for (char* floating_pointer_str = (char*)floating_pointer_region->vaddr().offset(offset_in_page((u32)(ebda_segment << 4))).as_ptr(); floating_pointer_str < (char*)(floating_pointer_region->vaddr().offset(offset_in_page((u32)(ebda_segment << 4))).get() + 1024); floating_pointer_str += 16) {
#ifdef MUTLIPROCESSOR_DEBUG
dbg() << "MultiProcessor: Looking for floating pointer structure in EBDA @ V0x " << String::format("%x", floating_pointer_str) << ", P0x" << String::format("%x", p_floating_pointer_str);
#endif
if (!strncmp("_MP_", floating_pointer_str, strlen("_MP_")))
return (FlatPtr)p_floating_pointer_str;
p_floating_pointer_str += 16;
}
return (FlatPtr) nullptr;
}
FlatPtr MultiProcessorParser::search_floating_pointer_in_bios_area()
{
auto floating_pointer_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)0xE0000)), PAGE_ROUND_UP(0xFFFFF - 0xE0000), "MultiProcessor Parser floating_pointer Finding #2", Region::Access::Read, false, true);
char* p_floating_pointer_str = (char*)(PhysicalAddress(0xE0000).as_ptr());
for (char* floating_pointer_str = (char*)floating_pointer_region->vaddr().offset(offset_in_page((u32)(0xE0000))).as_ptr(); floating_pointer_str < (char*)(floating_pointer_region->vaddr().offset(offset_in_page((u32)(0xE0000))).get() + (0xFFFFF - 0xE0000)); floating_pointer_str += 16) {
#ifdef MUTLIPROCESSOR_DEBUG
dbg() << "MultiProcessor: Looking for floating pointer structure in BIOS area @ V0x " << String::format("%x", floating_pointer_str) << ", P0x" << String::format("%x", p_floating_pointer_str);
#endif
if (!strncmp("_MP_", floating_pointer_str, strlen("_MP_")))
return (FlatPtr)p_floating_pointer_str;
p_floating_pointer_str += 16;
}
return (FlatPtr) nullptr;
}
Vector<unsigned> MultiProcessorParser::get_pci_bus_ids()
{
Vector<unsigned> pci_bus_ids;
for (auto entry : m_bus_entries) {
auto entry_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)entry)), PAGE_ROUND_UP(m_configuration_table_length), "MultiProcessor Parser Parsing Bus Entry", Region::Access::Read, false, true);
auto* v_entry_ptr = (MultiProcessor::BusEntry*)entry_region->vaddr().offset(offset_in_page((u32)entry)).as_ptr();
if (!strncmp("PCI ", v_entry_ptr->bus_type, strlen("PCI ")))
pci_bus_ids.append(v_entry_ptr->bus_id);
}
return pci_bus_ids;
}
MultiProcessorParser& MultiProcessorParser::the()
{
ASSERT(!MultiProcessorParser::is_initialized());
return *s_parser;
}
Vector<RefPtr<PCIInterruptOverrideMetadata>> MultiProcessorParser::get_pci_interrupt_redirections()
{
dbg() << "MultiProcessor: Get PCI IOAPIC redirections";
Vector<RefPtr<PCIInterruptOverrideMetadata>> overrides;
Vector<unsigned> pci_bus_ids = get_pci_bus_ids();
for (auto entry : m_io_interrupt_redirection_entries) {
auto entry_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)entry)), PAGE_ROUND_UP(m_configuration_table_length), "MultiProcessor Parser Parsing Bus Entry", Region::Access::Read, false, true);
auto* v_entry_ptr = (MultiProcessor::IOInterruptAssignmentEntry*)entry_region->vaddr().offset(offset_in_page((u32)entry)).as_ptr();
dbg() << "MultiProcessor: Parsing Entry P 0x" << String::format("%x", entry) << ", V " << v_entry_ptr;
for (auto id : pci_bus_ids) {
if (id == v_entry_ptr->source_bus_id) {
klog() << "Interrupts: Bus " << v_entry_ptr->source_bus_id << ", Polarity " << v_entry_ptr->polarity << ", Trigger Mode " << v_entry_ptr->trigger_mode << ", INT " << v_entry_ptr->source_bus_irq << ", IOAPIC " << v_entry_ptr->destination_ioapic_id << ", IOAPIC INTIN " << v_entry_ptr->destination_ioapic_intin_pin;
overrides.append(adopt(*new PCIInterruptOverrideMetadata(
v_entry_ptr->source_bus_id,
v_entry_ptr->polarity,
v_entry_ptr->trigger_mode,
v_entry_ptr->source_bus_irq,
v_entry_ptr->destination_ioapic_id,
v_entry_ptr->destination_ioapic_intin_pin)));
}
}
}
for (auto override_metadata : overrides) {
klog() << "Interrupts: Bus " << override_metadata->bus() << ", Polarity " << override_metadata->polarity() << ", PCI Device " << override_metadata->pci_device_number() << ", Trigger Mode " << override_metadata->trigger_mode() << ", INT " << override_metadata->pci_interrupt_pin() << ", IOAPIC " << override_metadata->ioapic_id() << ", IOAPIC INTIN " << override_metadata->ioapic_interrupt_pin();
}
return overrides;
}
PCIInterruptOverrideMetadata::PCIInterruptOverrideMetadata(u8 bus_id, u8 polarity, u8 trigger_mode, u8 source_irq, u32 ioapic_id, u16 ioapic_int_pin)
: m_bus_id(bus_id)
, m_polarity(polarity)
, m_trigger_mode(trigger_mode)
, m_pci_interrupt_pin(source_irq & 0b11)
, m_pci_device_number((source_irq & 0b11111) >> 2)
, m_ioapic_id(ioapic_id)
, m_ioapic_interrupt_pin(ioapic_int_pin)
{
}
u8 PCIInterruptOverrideMetadata::bus() const
{
return m_bus_id;
}
u8 PCIInterruptOverrideMetadata::polarity() const
{
return m_polarity;
}
u8 PCIInterruptOverrideMetadata::trigger_mode() const
{
return m_trigger_mode;
}
u8 PCIInterruptOverrideMetadata::pci_interrupt_pin() const
{
return m_pci_interrupt_pin;
}
u8 PCIInterruptOverrideMetadata::pci_device_number() const
{
return m_pci_device_number;
}
u32 PCIInterruptOverrideMetadata::ioapic_id() const
{
return m_ioapic_id;
}
u16 PCIInterruptOverrideMetadata::ioapic_interrupt_pin() const
{
return m_ioapic_interrupt_pin;
}
}