ladybird/Userland/Libraries/LibGfx/Bitmap.cpp
Daniel Bertalan f14a4994b0 Everywhere: Don't promote float to double where not needed
The `float => double => float` round trip seen in a couple of places
might pessimize the code. Even if it's truncated to an int in the end,
it's weird not to use the functions with the `f` suffixes when working
with single precision floats.
2021-07-08 10:11:00 +02:00

625 lines
20 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Checked.h>
#include <AK/LexicalPath.h>
#include <AK/Memory.h>
#include <AK/MemoryStream.h>
#include <AK/Optional.h>
#include <AK/ScopeGuard.h>
#include <AK/String.h>
#include <LibGfx/BMPLoader.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/DDSLoader.h>
#include <LibGfx/GIFLoader.h>
#include <LibGfx/ICOLoader.h>
#include <LibGfx/JPGLoader.h>
#include <LibGfx/PBMLoader.h>
#include <LibGfx/PGMLoader.h>
#include <LibGfx/PNGLoader.h>
#include <LibGfx/PPMLoader.h>
#include <LibGfx/ShareableBitmap.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
namespace Gfx {
struct BackingStore {
void* data { nullptr };
size_t pitch { 0 };
size_t size_in_bytes { 0 };
};
size_t Bitmap::minimum_pitch(size_t physical_width, BitmapFormat format)
{
size_t element_size;
switch (determine_storage_format(format)) {
case StorageFormat::Indexed8:
element_size = 1;
break;
case StorageFormat::BGRx8888:
case StorageFormat::BGRA8888:
case StorageFormat::RGBA8888:
element_size = 4;
break;
default:
VERIFY_NOT_REACHED();
}
return physical_width * element_size;
}
static bool size_would_overflow(BitmapFormat format, const IntSize& size, int scale_factor)
{
if (size.width() < 0 || size.height() < 0)
return true;
// This check is a bit arbitrary, but should protect us from most shenanigans:
if (size.width() >= INT16_MAX || size.height() >= INT16_MAX || scale_factor < 1 || scale_factor > 4)
return true;
// In contrast, this check is absolutely necessary:
size_t pitch = Bitmap::minimum_pitch(size.width() * scale_factor, format);
return Checked<size_t>::multiplication_would_overflow(pitch, size.height() * scale_factor);
}
RefPtr<Bitmap> Bitmap::create(BitmapFormat format, const IntSize& size, int scale_factor)
{
auto backing_store = Bitmap::allocate_backing_store(format, size, scale_factor, Purgeable::No);
if (!backing_store.has_value())
return nullptr;
return adopt_ref(*new Bitmap(format, size, scale_factor, Purgeable::No, backing_store.value()));
}
RefPtr<Bitmap> Bitmap::create_purgeable(BitmapFormat format, const IntSize& size, int scale_factor)
{
auto backing_store = Bitmap::allocate_backing_store(format, size, scale_factor, Purgeable::Yes);
if (!backing_store.has_value())
return nullptr;
return adopt_ref(*new Bitmap(format, size, scale_factor, Purgeable::Yes, backing_store.value()));
}
RefPtr<Bitmap> Bitmap::create_shareable(BitmapFormat format, const IntSize& size, int scale_factor)
{
if (size_would_overflow(format, size, scale_factor))
return nullptr;
const auto pitch = minimum_pitch(size.width() * scale_factor, format);
const auto data_size = size_in_bytes(pitch, size.height() * scale_factor);
auto buffer = Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(data_size, PAGE_SIZE));
if (!buffer.is_valid())
return nullptr;
return Bitmap::create_with_anonymous_buffer(format, buffer, size, scale_factor, {});
}
Bitmap::Bitmap(BitmapFormat format, const IntSize& size, int scale_factor, Purgeable purgeable, const BackingStore& backing_store)
: m_size(size)
, m_scale(scale_factor)
, m_data(backing_store.data)
, m_pitch(backing_store.pitch)
, m_format(format)
, m_purgeable(purgeable == Purgeable::Yes)
{
VERIFY(!m_size.is_empty());
VERIFY(!size_would_overflow(format, size, scale_factor));
VERIFY(m_data);
VERIFY(backing_store.size_in_bytes == size_in_bytes());
allocate_palette_from_format(format, {});
m_needs_munmap = true;
}
RefPtr<Bitmap> Bitmap::create_wrapper(BitmapFormat format, const IntSize& size, int scale_factor, size_t pitch, void* data)
{
if (size_would_overflow(format, size, scale_factor))
return nullptr;
return adopt_ref(*new Bitmap(format, size, scale_factor, pitch, data));
}
RefPtr<Bitmap> Bitmap::load_from_file(String const& path, int scale_factor)
{
if (scale_factor > 1 && path.starts_with("/res/")) {
LexicalPath lexical_path { path };
StringBuilder highdpi_icon_path;
highdpi_icon_path.append(lexical_path.dirname());
highdpi_icon_path.append('/');
highdpi_icon_path.append(lexical_path.title());
highdpi_icon_path.appendff("-{}x.", scale_factor);
highdpi_icon_path.append(lexical_path.extension());
RefPtr<Bitmap> bmp;
#define __ENUMERATE_IMAGE_FORMAT(Name, Ext) \
if (path.ends_with(Ext, CaseSensitivity::CaseInsensitive)) \
bmp = load_##Name(highdpi_icon_path.to_string());
ENUMERATE_IMAGE_FORMATS
#undef __ENUMERATE_IMAGE_FORMAT
if (bmp) {
VERIFY(bmp->width() % scale_factor == 0);
VERIFY(bmp->height() % scale_factor == 0);
bmp->m_size.set_width(bmp->width() / scale_factor);
bmp->m_size.set_height(bmp->height() / scale_factor);
bmp->m_scale = scale_factor;
return bmp;
}
}
#define __ENUMERATE_IMAGE_FORMAT(Name, Ext) \
if (path.ends_with(Ext, CaseSensitivity::CaseInsensitive)) \
return load_##Name(path);
ENUMERATE_IMAGE_FORMATS
#undef __ENUMERATE_IMAGE_FORMAT
return nullptr;
}
Bitmap::Bitmap(BitmapFormat format, const IntSize& size, int scale_factor, size_t pitch, void* data)
: m_size(size)
, m_scale(scale_factor)
, m_data(data)
, m_pitch(pitch)
, m_format(format)
{
VERIFY(pitch >= minimum_pitch(size.width() * scale_factor, format));
VERIFY(!size_would_overflow(format, size, scale_factor));
// FIXME: assert that `data` is actually long enough!
allocate_palette_from_format(format, {});
}
static bool check_size(const IntSize& size, int scale_factor, BitmapFormat format, unsigned actual_size)
{
// FIXME: Code duplication of size_in_bytes() and m_pitch
unsigned expected_size_min = Bitmap::minimum_pitch(size.width() * scale_factor, format) * size.height() * scale_factor;
unsigned expected_size_max = round_up_to_power_of_two(expected_size_min, PAGE_SIZE);
if (expected_size_min > actual_size || actual_size > expected_size_max) {
// Getting here is most likely an error.
dbgln("Constructing a shared bitmap for format {} and size {} @ {}x, which demands {} bytes, which rounds up to at most {}.",
static_cast<int>(format),
size,
scale_factor,
expected_size_min,
expected_size_max);
dbgln("However, we were given {} bytes, which is outside this range?! Refusing cowardly.", actual_size);
return false;
}
return true;
}
RefPtr<Bitmap> Bitmap::create_with_anonymous_buffer(BitmapFormat format, Core::AnonymousBuffer buffer, const IntSize& size, int scale_factor, const Vector<RGBA32>& palette)
{
if (size_would_overflow(format, size, scale_factor))
return nullptr;
return adopt_ref(*new Bitmap(format, move(buffer), size, scale_factor, palette));
}
/// Read a bitmap as described by:
/// - actual size
/// - width
/// - height
/// - scale_factor
/// - format
/// - palette count
/// - palette data (= palette count * BGRA8888)
/// - image data (= actual size * u8)
RefPtr<Bitmap> Bitmap::create_from_serialized_byte_buffer(ByteBuffer&& buffer)
{
InputMemoryStream stream { buffer };
unsigned actual_size;
unsigned width;
unsigned height;
unsigned scale_factor;
BitmapFormat format;
unsigned palette_size;
Vector<RGBA32> palette;
auto read = [&]<typename T>(T& value) {
if (stream.read({ &value, sizeof(T) }) != sizeof(T))
return false;
return true;
};
if (!read(actual_size) || !read(width) || !read(height) || !read(scale_factor) || !read(format) || !read(palette_size))
return nullptr;
if (format > BitmapFormat::BGRA8888 || format < BitmapFormat::Indexed1)
return nullptr;
if (!check_size({ width, height }, scale_factor, format, actual_size))
return {};
palette.ensure_capacity(palette_size);
for (size_t i = 0; i < palette_size; ++i) {
if (!read(palette[i]))
return {};
}
if (stream.remaining() < actual_size)
return {};
auto data = stream.bytes().slice(stream.offset(), actual_size);
auto bitmap = Bitmap::create(format, { width, height }, scale_factor);
if (!bitmap)
return {};
bitmap->m_palette = new RGBA32[palette_size];
memcpy(bitmap->m_palette, palette.data(), palette_size * sizeof(RGBA32));
data.copy_to({ bitmap->scanline(0), bitmap->size_in_bytes() });
return bitmap;
}
ByteBuffer Bitmap::serialize_to_byte_buffer() const
{
auto buffer = ByteBuffer::create_uninitialized(5 * sizeof(unsigned) + sizeof(BitmapFormat) + sizeof(RGBA32) * palette_size(m_format) + size_in_bytes());
OutputMemoryStream stream { buffer };
auto write = [&]<typename T>(T value) {
if (stream.write({ &value, sizeof(T) }) != sizeof(T))
return false;
return true;
};
auto palette = palette_to_vector();
if (!write(size_in_bytes()) || !write((unsigned)size().width()) || !write((unsigned)size().height()) || !write((unsigned)scale()) || !write(m_format) || !write((unsigned)palette.size()))
return {};
for (auto& p : palette) {
if (!write(p))
return {};
}
auto size = size_in_bytes();
VERIFY(stream.remaining() == size);
if (stream.write({ scanline(0), size }) != size)
return {};
return buffer;
}
Bitmap::Bitmap(BitmapFormat format, Core::AnonymousBuffer buffer, const IntSize& size, int scale_factor, const Vector<RGBA32>& palette)
: m_size(size)
, m_scale(scale_factor)
, m_data(buffer.data<void>())
, m_pitch(minimum_pitch(size.width() * scale_factor, format))
, m_format(format)
, m_purgeable(true)
, m_buffer(move(buffer))
{
VERIFY(!is_indexed() || !palette.is_empty());
VERIFY(!size_would_overflow(format, size, scale_factor));
if (is_indexed(m_format))
allocate_palette_from_format(m_format, palette);
}
RefPtr<Gfx::Bitmap> Bitmap::clone() const
{
RefPtr<Gfx::Bitmap> new_bitmap {};
if (m_purgeable) {
new_bitmap = Bitmap::create_purgeable(format(), size(), scale());
} else {
new_bitmap = Bitmap::create(format(), size(), scale());
}
if (!new_bitmap) {
return nullptr;
}
VERIFY(size_in_bytes() == new_bitmap->size_in_bytes());
memcpy(new_bitmap->scanline(0), scanline(0), size_in_bytes());
return new_bitmap;
}
RefPtr<Gfx::Bitmap> Bitmap::rotated(Gfx::RotationDirection rotation_direction) const
{
auto new_bitmap = Gfx::Bitmap::create(this->format(), { height(), width() }, scale());
if (!new_bitmap)
return nullptr;
auto w = this->physical_width();
auto h = this->physical_height();
for (int i = 0; i < w; i++) {
for (int j = 0; j < h; j++) {
Color color;
if (rotation_direction == Gfx::RotationDirection::CounterClockwise)
color = this->get_pixel(w - i - 1, j);
else
color = this->get_pixel(i, h - j - 1);
new_bitmap->set_pixel(j, i, color);
}
}
return new_bitmap;
}
RefPtr<Gfx::Bitmap> Bitmap::flipped(Gfx::Orientation orientation) const
{
auto new_bitmap = Gfx::Bitmap::create(this->format(), { width(), height() }, scale());
if (!new_bitmap)
return nullptr;
auto w = this->physical_width();
auto h = this->physical_height();
for (int i = 0; i < w; i++) {
for (int j = 0; j < h; j++) {
Color color = this->get_pixel(i, j);
if (orientation == Orientation::Vertical)
new_bitmap->set_pixel(i, h - j - 1, color);
else
new_bitmap->set_pixel(w - i - 1, j, color);
}
}
return new_bitmap;
}
RefPtr<Gfx::Bitmap> Bitmap::scaled(int sx, int sy) const
{
VERIFY(sx >= 0 && sy >= 0);
if (sx == 1 && sy == 1)
return this;
auto new_bitmap = Gfx::Bitmap::create(format(), { width() * sx, height() * sy }, scale());
if (!new_bitmap)
return nullptr;
auto old_width = physical_width();
auto old_height = physical_height();
for (int y = 0; y < old_height; y++) {
for (int x = 0; x < old_width; x++) {
auto color = get_pixel(x, y);
auto base_x = x * sx;
auto base_y = y * sy;
for (int new_y = base_y; new_y < base_y + sy; new_y++) {
for (int new_x = base_x; new_x < base_x + sx; new_x++) {
new_bitmap->set_pixel(new_x, new_y, color);
}
}
}
}
return new_bitmap;
}
// http://fourier.eng.hmc.edu/e161/lectures/resize/node3.html
RefPtr<Gfx::Bitmap> Bitmap::scaled(float sx, float sy) const
{
VERIFY(sx >= 0.0f && sy >= 0.0f);
if (floorf(sx) == sx && floorf(sy) == sy)
return scaled(static_cast<int>(sx), static_cast<int>(sy));
int scaled_width = (int)ceilf(sx * (float)width());
int scaled_height = (int)ceilf(sy * (float)height());
auto new_bitmap = Gfx::Bitmap::create(format(), { scaled_width, scaled_height }, scale());
if (!new_bitmap)
return nullptr;
auto old_width = physical_width();
auto old_height = physical_height();
auto new_width = new_bitmap->physical_width();
auto new_height = new_bitmap->physical_height();
// The interpolation goes out of bounds on the bottom- and right-most edges.
// We handle those in two specialized loops not only to make them faster, but
// also to avoid four branch checks for every pixel.
for (int y = 0; y < new_height - 1; y++) {
for (int x = 0; x < new_width - 1; x++) {
auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
int i = floorf(p);
int j = floorf(q);
float u = p - static_cast<float>(i);
float v = q - static_cast<float>(j);
auto a = get_pixel(i, j);
auto b = get_pixel(i + 1, j);
auto c = get_pixel(i, j + 1);
auto d = get_pixel(i + 1, j + 1);
auto e = a.interpolate(b, u);
auto f = c.interpolate(d, u);
auto color = e.interpolate(f, v);
new_bitmap->set_pixel(x, y, color);
}
}
// Bottom strip (excluding last pixel)
auto old_bottom_y = old_height - 1;
auto new_bottom_y = new_height - 1;
for (int x = 0; x < new_width - 1; x++) {
auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
int i = floorf(p);
float u = p - static_cast<float>(i);
auto a = get_pixel(i, old_bottom_y);
auto b = get_pixel(i + 1, old_bottom_y);
auto color = a.interpolate(b, u);
new_bitmap->set_pixel(x, new_bottom_y, color);
}
// Right strip (excluding last pixel)
auto old_right_x = old_width - 1;
auto new_right_x = new_width - 1;
for (int y = 0; y < new_height - 1; y++) {
auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
int j = floorf(q);
float v = q - static_cast<float>(j);
auto c = get_pixel(old_right_x, j);
auto d = get_pixel(old_right_x, j + 1);
auto color = c.interpolate(d, v);
new_bitmap->set_pixel(new_right_x, y, color);
}
// Bottom-right pixel
new_bitmap->set_pixel(new_width - 1, new_height - 1, get_pixel(physical_width() - 1, physical_height() - 1));
return new_bitmap;
}
RefPtr<Gfx::Bitmap> Bitmap::cropped(Gfx::IntRect crop) const
{
auto new_bitmap = Gfx::Bitmap::create(format(), { crop.width(), crop.height() }, 1);
if (!new_bitmap)
return nullptr;
for (int y = 0; y < crop.height(); ++y) {
for (int x = 0; x < crop.width(); ++x) {
int global_x = x + crop.left();
int global_y = y + crop.top();
if (global_x >= physical_width() || global_y >= physical_height() || global_x < 0 || global_y < 0) {
new_bitmap->set_pixel(x, y, Gfx::Color::Black);
} else {
new_bitmap->set_pixel(x, y, get_pixel(global_x, global_y));
}
}
}
return new_bitmap;
}
RefPtr<Bitmap> Bitmap::to_bitmap_backed_by_anonymous_buffer() const
{
if (m_buffer.is_valid())
return *this;
auto buffer = Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(size_in_bytes(), PAGE_SIZE));
if (!buffer.is_valid())
return nullptr;
auto bitmap = Bitmap::create_with_anonymous_buffer(m_format, move(buffer), size(), scale(), palette_to_vector());
if (!bitmap)
return nullptr;
memcpy(bitmap->scanline(0), scanline(0), size_in_bytes());
return bitmap;
}
Bitmap::~Bitmap()
{
if (m_needs_munmap) {
int rc = munmap(m_data, size_in_bytes());
VERIFY(rc == 0);
}
m_data = nullptr;
delete[] m_palette;
}
void Bitmap::set_mmap_name([[maybe_unused]] String const& name)
{
VERIFY(m_needs_munmap);
#ifdef __serenity__
::set_mmap_name(m_data, size_in_bytes(), name.characters());
#endif
}
void Bitmap::fill(Color color)
{
VERIFY(!is_indexed(m_format));
for (int y = 0; y < physical_height(); ++y) {
auto* scanline = this->scanline(y);
fast_u32_fill(scanline, color.value(), physical_width());
}
}
void Bitmap::set_volatile()
{
VERIFY(m_purgeable);
if (m_volatile)
return;
#ifdef __serenity__
int rc = madvise(m_data, size_in_bytes(), MADV_SET_VOLATILE);
if (rc < 0) {
perror("madvise(MADV_SET_VOLATILE)");
VERIFY_NOT_REACHED();
}
#endif
m_volatile = true;
}
[[nodiscard]] bool Bitmap::set_nonvolatile()
{
VERIFY(m_purgeable);
if (!m_volatile)
return true;
#ifdef __serenity__
int rc = madvise(m_data, size_in_bytes(), MADV_SET_NONVOLATILE);
if (rc < 0) {
perror("madvise(MADV_SET_NONVOLATILE)");
VERIFY_NOT_REACHED();
}
#else
int rc = 0;
#endif
m_volatile = false;
return rc == 0;
}
ShareableBitmap Bitmap::to_shareable_bitmap() const
{
auto bitmap = to_bitmap_backed_by_anonymous_buffer();
if (!bitmap)
return {};
return ShareableBitmap(*bitmap);
}
Optional<BackingStore> Bitmap::allocate_backing_store(BitmapFormat format, const IntSize& size, int scale_factor, [[maybe_unused]] Purgeable purgeable)
{
if (size_would_overflow(format, size, scale_factor))
return {};
const auto pitch = minimum_pitch(size.width() * scale_factor, format);
const auto data_size_in_bytes = size_in_bytes(pitch, size.height() * scale_factor);
int map_flags = MAP_ANONYMOUS | MAP_PRIVATE;
if (purgeable == Purgeable::Yes)
map_flags |= MAP_NORESERVE;
#ifdef __serenity__
void* data = mmap_with_name(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, 0, 0, String::formatted("GraphicsBitmap [{}]", size).characters());
#else
void* data = mmap(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, 0, 0);
#endif
if (data == MAP_FAILED) {
perror("mmap");
return {};
}
return { { data, pitch, data_size_in_bytes } };
}
void Bitmap::allocate_palette_from_format(BitmapFormat format, const Vector<RGBA32>& source_palette)
{
size_t size = palette_size(format);
if (size == 0)
return;
m_palette = new RGBA32[size];
if (!source_palette.is_empty()) {
VERIFY(source_palette.size() == size);
memcpy(m_palette, source_palette.data(), size * sizeof(RGBA32));
}
}
Vector<RGBA32> Bitmap::palette_to_vector() const
{
Vector<RGBA32> vector;
auto size = palette_size(m_format);
vector.ensure_capacity(size);
for (size_t i = 0; i < size; ++i)
vector.unchecked_append(palette_color(i).value());
return vector;
}
}