mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-10 13:00:29 +03:00
1e43292c3b
To add a new per-CPU data structure, add an ID for it to the ProcessorSpecificDataID enum. Then call ProcessorSpecific<T>::initialize() when you are ready to construct the per-CPU data structure on the current CPU. It can then be accessed via ProcessorSpecific<T>::get(). This patch replaces the existing hard-coded mechanisms for Scheduler and MemoryManager per-CPU data structure.
1158 lines
46 KiB
C++
1158 lines
46 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Assertions.h>
|
|
#include <AK/Memory.h>
|
|
#include <AK/StringView.h>
|
|
#include <Kernel/BootInfo.h>
|
|
#include <Kernel/CMOS.h>
|
|
#include <Kernel/FileSystem/Inode.h>
|
|
#include <Kernel/Heap/kmalloc.h>
|
|
#include <Kernel/Multiboot.h>
|
|
#include <Kernel/Panic.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/Sections.h>
|
|
#include <Kernel/StdLib.h>
|
|
#include <Kernel/VM/AnonymousVMObject.h>
|
|
#include <Kernel/VM/MemoryManager.h>
|
|
#include <Kernel/VM/PageDirectory.h>
|
|
#include <Kernel/VM/PhysicalRegion.h>
|
|
#include <Kernel/VM/SharedInodeVMObject.h>
|
|
|
|
extern u8 start_of_kernel_image[];
|
|
extern u8 end_of_kernel_image[];
|
|
extern u8 start_of_kernel_text[];
|
|
extern u8 start_of_kernel_data[];
|
|
extern u8 end_of_kernel_bss[];
|
|
extern u8 start_of_ro_after_init[];
|
|
extern u8 end_of_ro_after_init[];
|
|
extern u8 start_of_unmap_after_init[];
|
|
extern u8 end_of_unmap_after_init[];
|
|
extern u8 start_of_kernel_ksyms[];
|
|
extern u8 end_of_kernel_ksyms[];
|
|
|
|
extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
|
|
extern size_t multiboot_copy_boot_modules_count;
|
|
|
|
// Treat the super pages as logically separate from .bss
|
|
__attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB];
|
|
|
|
namespace Kernel {
|
|
|
|
// NOTE: We can NOT use AK::Singleton for this class, because
|
|
// MemoryManager::initialize is called *before* global constructors are
|
|
// run. If we do, then AK::Singleton would get re-initialized, causing
|
|
// the memory manager to be initialized twice!
|
|
static MemoryManager* s_the;
|
|
RecursiveSpinLock s_mm_lock;
|
|
|
|
MemoryManager& MM
|
|
{
|
|
return *s_the;
|
|
}
|
|
|
|
bool MemoryManager::is_initialized()
|
|
{
|
|
return s_the != nullptr;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT MemoryManager::MemoryManager()
|
|
{
|
|
s_the = this;
|
|
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
parse_memory_map();
|
|
write_cr3(kernel_page_directory().cr3());
|
|
protect_kernel_image();
|
|
|
|
// We're temporarily "committing" to two pages that we need to allocate below
|
|
if (!commit_user_physical_pages(2))
|
|
VERIFY_NOT_REACHED();
|
|
|
|
m_shared_zero_page = allocate_committed_user_physical_page();
|
|
|
|
// We're wasting a page here, we just need a special tag (physical
|
|
// address) so that we know when we need to lazily allocate a page
|
|
// that we should be drawing this page from the committed pool rather
|
|
// than potentially failing if no pages are available anymore.
|
|
// By using a tag we don't have to query the VMObject for every page
|
|
// whether it was committed or not
|
|
m_lazy_committed_page = allocate_committed_user_physical_page();
|
|
}
|
|
|
|
UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
|
|
{
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
|
|
{
|
|
ScopedSpinLock page_lock(kernel_page_directory().get_lock());
|
|
// Disable writing to the kernel text and rodata segments.
|
|
for (auto i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
|
|
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
|
|
pte.set_writable(false);
|
|
}
|
|
if (Processor::current().has_feature(CPUFeature::NX)) {
|
|
// Disable execution of the kernel data, bss and heap segments.
|
|
for (auto i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
|
|
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
|
|
pte.set_execute_disabled(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
|
|
{
|
|
ScopedSpinLock mm_lock(s_mm_lock);
|
|
ScopedSpinLock page_lock(kernel_page_directory().get_lock());
|
|
// Disable writing to the .ro_after_init section
|
|
for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
|
|
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
|
|
pte.set_writable(false);
|
|
flush_tlb(&kernel_page_directory(), VirtualAddress(i));
|
|
}
|
|
}
|
|
|
|
void MemoryManager::unmap_text_after_init()
|
|
{
|
|
ScopedSpinLock mm_lock(s_mm_lock);
|
|
ScopedSpinLock page_lock(kernel_page_directory().get_lock());
|
|
|
|
auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
|
|
auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
|
|
|
|
// Unmap the entire .unmap_after_init section
|
|
for (auto i = start; i < end; i += PAGE_SIZE) {
|
|
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
|
|
pte.clear();
|
|
flush_tlb(&kernel_page_directory(), VirtualAddress(i));
|
|
}
|
|
|
|
dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
|
|
}
|
|
|
|
void MemoryManager::unmap_ksyms_after_init()
|
|
{
|
|
ScopedSpinLock mm_lock(s_mm_lock);
|
|
ScopedSpinLock page_lock(kernel_page_directory().get_lock());
|
|
|
|
auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
|
|
auto end = page_round_up((FlatPtr)end_of_kernel_ksyms);
|
|
|
|
// Unmap the entire .ksyms section
|
|
for (auto i = start; i < end; i += PAGE_SIZE) {
|
|
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
|
|
pte.clear();
|
|
flush_tlb(&kernel_page_directory(), VirtualAddress(i));
|
|
}
|
|
|
|
dmesgln("Unmapped {} KiB of kernel symbols after init! :^)", (end - start) / KiB);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
|
|
{
|
|
VERIFY(!m_physical_memory_ranges.is_empty());
|
|
ContiguousReservedMemoryRange range;
|
|
for (auto& current_range : m_physical_memory_ranges) {
|
|
if (current_range.type != PhysicalMemoryRangeType::Reserved) {
|
|
if (range.start.is_null())
|
|
continue;
|
|
m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
|
|
range.start.set((FlatPtr) nullptr);
|
|
continue;
|
|
}
|
|
if (!range.start.is_null()) {
|
|
continue;
|
|
}
|
|
range.start = current_range.start;
|
|
}
|
|
if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
|
|
return;
|
|
if (range.start.is_null())
|
|
return;
|
|
m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
|
|
}
|
|
|
|
bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, Range const& range) const
|
|
{
|
|
VERIFY(!m_reserved_memory_ranges.is_empty());
|
|
for (auto& current_range : m_reserved_memory_ranges) {
|
|
if (!(current_range.start <= start_address))
|
|
continue;
|
|
if (!(current_range.start.offset(current_range.length) > start_address))
|
|
continue;
|
|
if (current_range.length < range.size())
|
|
return false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
|
|
{
|
|
// Register used memory regions that we know of.
|
|
m_used_memory_ranges.ensure_capacity(4);
|
|
m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
|
|
m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Prekernel, start_of_prekernel_image, end_of_prekernel_image });
|
|
m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image))) });
|
|
|
|
if (multiboot_flags & 0x4) {
|
|
auto* bootmods_start = multiboot_copy_boot_modules_array;
|
|
auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
|
|
|
|
for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
|
|
m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
|
|
}
|
|
}
|
|
|
|
auto* mmap_begin = multiboot_memory_map;
|
|
auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
|
|
|
|
struct ContiguousPhysicalRange {
|
|
PhysicalAddress lower;
|
|
PhysicalAddress upper;
|
|
};
|
|
|
|
Vector<ContiguousPhysicalRange> contiguous_physical_ranges;
|
|
|
|
for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
|
|
dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", mmap->addr, mmap->len, mmap->type);
|
|
|
|
auto start_address = PhysicalAddress(mmap->addr);
|
|
auto length = mmap->len;
|
|
switch (mmap->type) {
|
|
case (MULTIBOOT_MEMORY_AVAILABLE):
|
|
m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
|
|
break;
|
|
case (MULTIBOOT_MEMORY_RESERVED):
|
|
m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
|
|
break;
|
|
case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
|
|
m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
|
|
break;
|
|
case (MULTIBOOT_MEMORY_NVS):
|
|
m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
|
|
break;
|
|
case (MULTIBOOT_MEMORY_BADRAM):
|
|
dmesgln("MM: Warning, detected bad memory range!");
|
|
m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
|
|
break;
|
|
default:
|
|
dbgln("MM: Unknown range!");
|
|
m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
|
|
break;
|
|
}
|
|
|
|
if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
|
|
continue;
|
|
|
|
// Fix up unaligned memory regions.
|
|
auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
|
|
if (diff != 0) {
|
|
dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", mmap->addr, diff);
|
|
diff = PAGE_SIZE - diff;
|
|
mmap->addr += diff;
|
|
mmap->len -= diff;
|
|
}
|
|
if ((mmap->len % PAGE_SIZE) != 0) {
|
|
dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", mmap->len, mmap->len % PAGE_SIZE);
|
|
mmap->len -= mmap->len % PAGE_SIZE;
|
|
}
|
|
if (mmap->len < PAGE_SIZE) {
|
|
dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, mmap->len);
|
|
continue;
|
|
}
|
|
|
|
for (PhysicalSize page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
|
|
auto addr = PhysicalAddress(page_base);
|
|
|
|
// Skip used memory ranges.
|
|
bool should_skip = false;
|
|
for (auto& used_range : m_used_memory_ranges) {
|
|
if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
|
|
should_skip = true;
|
|
break;
|
|
}
|
|
}
|
|
if (should_skip)
|
|
continue;
|
|
|
|
if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
|
|
contiguous_physical_ranges.append(ContiguousPhysicalRange {
|
|
.lower = addr,
|
|
.upper = addr,
|
|
});
|
|
} else {
|
|
contiguous_physical_ranges.last().upper = addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto& range : contiguous_physical_ranges) {
|
|
m_user_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
|
|
}
|
|
|
|
// Super pages are guaranteed to be in the first 16MB of physical memory
|
|
VERIFY(virtual_to_low_physical((FlatPtr)super_pages) + sizeof(super_pages) < 0x1000000);
|
|
|
|
// Append statically-allocated super physical physical_region.
|
|
m_super_physical_regions.append(PhysicalRegion::try_create(
|
|
PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
|
|
PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages)))))
|
|
.release_nonnull());
|
|
|
|
for (auto& region : m_super_physical_regions)
|
|
m_system_memory_info.super_physical_pages += region.size();
|
|
|
|
for (auto& region : m_user_physical_regions)
|
|
m_system_memory_info.user_physical_pages += region.size();
|
|
|
|
register_reserved_ranges();
|
|
for (auto& range : m_reserved_memory_ranges) {
|
|
dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
|
|
}
|
|
|
|
initialize_physical_pages();
|
|
|
|
VERIFY(m_system_memory_info.super_physical_pages > 0);
|
|
VERIFY(m_system_memory_info.user_physical_pages > 0);
|
|
|
|
// We start out with no committed pages
|
|
m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages;
|
|
|
|
for (auto& used_range : m_used_memory_ranges) {
|
|
dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
|
|
}
|
|
|
|
for (auto& region : m_super_physical_regions) {
|
|
dmesgln("MM: Super physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
|
|
region.initialize_zones();
|
|
}
|
|
|
|
for (auto& region : m_user_physical_regions) {
|
|
dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
|
|
region.initialize_zones();
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
|
|
{
|
|
// We assume that the physical page range is contiguous and doesn't contain huge gaps!
|
|
PhysicalAddress highest_physical_address;
|
|
for (auto& range : m_used_memory_ranges) {
|
|
if (range.end.get() > highest_physical_address.get())
|
|
highest_physical_address = range.end;
|
|
}
|
|
for (auto& region : m_physical_memory_ranges) {
|
|
auto range_end = PhysicalAddress(region.start).offset(region.length);
|
|
if (range_end.get() > highest_physical_address.get())
|
|
highest_physical_address = range_end;
|
|
}
|
|
|
|
// Calculate how many total physical pages the array will have
|
|
m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
|
|
VERIFY(m_physical_page_entries_count != 0);
|
|
VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
|
|
|
|
// Calculate how many bytes the array will consume
|
|
auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
|
|
auto physical_page_array_pages = page_round_up(physical_page_array_size) / PAGE_SIZE;
|
|
VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
|
|
|
|
// Calculate how many page tables we will need to be able to map them all
|
|
auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
|
|
|
|
auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
|
|
|
|
// Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
|
|
PhysicalRegion* found_region { nullptr };
|
|
Optional<size_t> found_region_index;
|
|
for (size_t i = 0; i < m_user_physical_regions.size(); ++i) {
|
|
auto& region = m_user_physical_regions[i];
|
|
if (region.size() >= physical_page_array_pages_and_page_tables_count) {
|
|
found_region = ®ion;
|
|
found_region_index = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found_region) {
|
|
dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
VERIFY(m_system_memory_info.user_physical_pages >= physical_page_array_pages_and_page_tables_count);
|
|
m_system_memory_info.user_physical_pages -= physical_page_array_pages_and_page_tables_count;
|
|
|
|
if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
|
|
// We're stealing the entire region
|
|
m_physical_pages_region = m_user_physical_regions.take(*found_region_index);
|
|
} else {
|
|
m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
|
|
}
|
|
m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
|
|
|
|
// Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
|
|
m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
|
|
|
|
// Allocate a virtual address range for our array
|
|
auto range = m_kernel_page_directory->range_allocator().allocate_anywhere(physical_page_array_pages * PAGE_SIZE);
|
|
if (!range.has_value()) {
|
|
dmesgln("MM: Could not allocate {} bytes to map physical page array!", physical_page_array_pages * PAGE_SIZE);
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
// Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
|
|
// try to map the entire region into kernel space so we always have it
|
|
// We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
|
|
// mapped yet so we can't create them
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
|
|
// Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
|
|
auto page_tables_base = m_physical_pages_region->lower();
|
|
auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
|
|
auto physical_page_array_current_page = physical_page_array_base.get();
|
|
auto virtual_page_array_base = range.value().base().get();
|
|
auto virtual_page_array_current_page = virtual_page_array_base;
|
|
for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
|
|
auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
|
|
auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
|
|
auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
|
|
__builtin_memset(pt, 0, PAGE_SIZE);
|
|
for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
|
|
auto& pte = pt[pte_index];
|
|
pte.set_physical_page_base(physical_page_array_current_page);
|
|
pte.set_user_allowed(false);
|
|
pte.set_writable(true);
|
|
if (Processor::current().has_feature(CPUFeature::NX))
|
|
pte.set_execute_disabled(false);
|
|
pte.set_global(true);
|
|
pte.set_present(true);
|
|
|
|
physical_page_array_current_page += PAGE_SIZE;
|
|
virtual_page_array_current_page += PAGE_SIZE;
|
|
}
|
|
unquickmap_page();
|
|
|
|
// Hook the page table into the kernel page directory
|
|
u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
|
|
auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
|
|
PageDirectoryEntry& pde = pd[page_directory_index];
|
|
|
|
VERIFY(!pde.is_present()); // Nothing should be using this PD yet
|
|
|
|
// We can't use ensure_pte quite yet!
|
|
pde.set_page_table_base(pt_paddr.get());
|
|
pde.set_user_allowed(false);
|
|
pde.set_present(true);
|
|
pde.set_writable(true);
|
|
pde.set_global(true);
|
|
|
|
unquickmap_page();
|
|
|
|
flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
|
|
}
|
|
|
|
// We now have the entire PhysicalPageEntry array mapped!
|
|
m_physical_page_entries = (PhysicalPageEntry*)range.value().base().get();
|
|
for (size_t i = 0; i < m_physical_page_entries_count; i++)
|
|
new (&m_physical_page_entries[i]) PageTableEntry();
|
|
|
|
// Now we should be able to allocate PhysicalPage instances,
|
|
// so finish setting up the kernel page directory
|
|
m_kernel_page_directory->allocate_kernel_directory();
|
|
|
|
// Now create legit PhysicalPage objects for the page tables we created, so that
|
|
// we can put them into kernel_page_directory().m_page_tables
|
|
auto& kernel_page_tables = kernel_page_directory().m_page_tables;
|
|
virtual_page_array_current_page = virtual_page_array_base;
|
|
for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
|
|
VERIFY(virtual_page_array_current_page <= range.value().end().get());
|
|
auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
|
|
auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
|
|
auto& physical_page_entry = m_physical_page_entries[physical_page_index];
|
|
auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
|
|
auto result = kernel_page_tables.set(virtual_page_array_current_page & ~0x1fffff, move(physical_page));
|
|
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
|
|
|
|
virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
|
|
}
|
|
|
|
dmesgln("MM: Physical page entries: {}", range.value());
|
|
}
|
|
|
|
PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
|
|
{
|
|
VERIFY(m_physical_page_entries);
|
|
auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
|
|
VERIFY(physical_page_entry_index < m_physical_page_entries_count);
|
|
return m_physical_page_entries[physical_page_entry_index];
|
|
}
|
|
|
|
PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
|
|
{
|
|
PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
|
|
VERIFY(m_physical_page_entries);
|
|
size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
|
|
VERIFY(physical_page_entry_index < m_physical_page_entries_count);
|
|
return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
|
|
}
|
|
|
|
PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(s_mm_lock.own_lock());
|
|
VERIFY(page_directory.get_lock().own_lock());
|
|
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
|
|
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
|
|
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
|
|
|
|
auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
|
|
PageDirectoryEntry const& pde = pd[page_directory_index];
|
|
if (!pde.is_present())
|
|
return nullptr;
|
|
|
|
return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
|
|
}
|
|
|
|
PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(s_mm_lock.own_lock());
|
|
VERIFY(page_directory.get_lock().own_lock());
|
|
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
|
|
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
|
|
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
|
|
|
|
auto* pd = quickmap_pd(page_directory, page_directory_table_index);
|
|
PageDirectoryEntry& pde = pd[page_directory_index];
|
|
if (!pde.is_present()) {
|
|
bool did_purge = false;
|
|
auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
|
|
if (!page_table) {
|
|
dbgln("MM: Unable to allocate page table to map {}", vaddr);
|
|
return nullptr;
|
|
}
|
|
if (did_purge) {
|
|
// If any memory had to be purged, ensure_pte may have been called as part
|
|
// of the purging process. So we need to re-map the pd in this case to ensure
|
|
// we're writing to the correct underlying physical page
|
|
pd = quickmap_pd(page_directory, page_directory_table_index);
|
|
VERIFY(&pde == &pd[page_directory_index]); // Sanity check
|
|
|
|
VERIFY(!pde.is_present()); // Should have not changed
|
|
}
|
|
pde.set_page_table_base(page_table->paddr().get());
|
|
pde.set_user_allowed(true);
|
|
pde.set_present(true);
|
|
pde.set_writable(true);
|
|
pde.set_global(&page_directory == m_kernel_page_directory.ptr());
|
|
// Use page_directory_table_index and page_directory_index as key
|
|
// This allows us to release the page table entry when no longer needed
|
|
auto result = page_directory.m_page_tables.set(vaddr.get() & ~(FlatPtr)0x1fffff, move(page_table));
|
|
// If you're hitting this VERIFY on x86_64 chances are a 64-bit pointer was truncated somewhere
|
|
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
|
|
}
|
|
|
|
return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
|
|
}
|
|
|
|
void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(s_mm_lock.own_lock());
|
|
VERIFY(page_directory.get_lock().own_lock());
|
|
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
|
|
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
|
|
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
|
|
|
|
auto* pd = quickmap_pd(page_directory, page_directory_table_index);
|
|
PageDirectoryEntry& pde = pd[page_directory_index];
|
|
if (pde.is_present()) {
|
|
auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
|
|
auto& pte = page_table[page_table_index];
|
|
pte.clear();
|
|
|
|
if (is_last_release || page_table_index == 0x1ff) {
|
|
// If this is the last PTE in a region or the last PTE in a page table then
|
|
// check if we can also release the page table
|
|
bool all_clear = true;
|
|
for (u32 i = 0; i <= 0x1ff; i++) {
|
|
if (!page_table[i].is_null()) {
|
|
all_clear = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_clear) {
|
|
pde.clear();
|
|
|
|
auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
|
|
VERIFY(result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
|
|
{
|
|
ProcessorSpecific<MemoryManagerData>::initialize();
|
|
|
|
if (cpu == 0) {
|
|
new MemoryManager;
|
|
kmalloc_enable_expand();
|
|
}
|
|
}
|
|
|
|
Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
for (auto& region : MM.m_kernel_regions) {
|
|
if (region.contains(vaddr))
|
|
return ®ion;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Region* MemoryManager::find_user_region_from_vaddr_no_lock(Space& space, VirtualAddress vaddr)
|
|
{
|
|
VERIFY(space.get_lock().own_lock());
|
|
return space.find_region_containing({ vaddr, 1 });
|
|
}
|
|
|
|
Region* MemoryManager::find_user_region_from_vaddr(Space& space, VirtualAddress vaddr)
|
|
{
|
|
ScopedSpinLock lock(space.get_lock());
|
|
return find_user_region_from_vaddr_no_lock(space, vaddr);
|
|
}
|
|
|
|
void MemoryManager::validate_syscall_preconditions(Space& space, RegisterState const& regs)
|
|
{
|
|
// We take the space lock once here and then use the no_lock variants
|
|
// to avoid excessive spinlock recursion in this extemely common path.
|
|
ScopedSpinLock lock(space.get_lock());
|
|
|
|
auto unlock_and_handle_crash = [&lock, ®s](const char* description, int signal) {
|
|
lock.unlock();
|
|
handle_crash(regs, description, signal);
|
|
};
|
|
|
|
{
|
|
VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
|
|
if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
|
|
dbgln("Invalid stack pointer: {:p}", userspace_sp);
|
|
unlock_and_handle_crash("Bad stack on syscall entry", SIGSTKFLT);
|
|
}
|
|
}
|
|
|
|
{
|
|
VirtualAddress ip = VirtualAddress { regs.ip() };
|
|
auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
|
|
if (!calling_region) {
|
|
dbgln("Syscall from {:p} which has no associated region", ip);
|
|
unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
|
|
}
|
|
|
|
if (calling_region->is_writable()) {
|
|
dbgln("Syscall from writable memory at {:p}", ip);
|
|
unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
|
|
}
|
|
|
|
if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
|
|
dbgln("Syscall from non-syscall region");
|
|
unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
|
|
}
|
|
}
|
|
}
|
|
|
|
Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
if (auto* region = kernel_region_from_vaddr(vaddr))
|
|
return region;
|
|
auto page_directory = PageDirectory::find_by_cr3(read_cr3());
|
|
if (!page_directory)
|
|
return nullptr;
|
|
VERIFY(page_directory->space());
|
|
return find_user_region_from_vaddr(*page_directory->space(), vaddr);
|
|
}
|
|
|
|
PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
if (Processor::current().in_irq()) {
|
|
dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
|
|
Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq());
|
|
dump_kernel_regions();
|
|
return PageFaultResponse::ShouldCrash;
|
|
}
|
|
dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr());
|
|
auto* region = find_region_from_vaddr(fault.vaddr());
|
|
if (!region) {
|
|
return PageFaultResponse::ShouldCrash;
|
|
}
|
|
return region->handle_fault(fault);
|
|
}
|
|
|
|
OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
|
|
{
|
|
VERIFY(!(size % PAGE_SIZE));
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
|
|
if (!range.has_value())
|
|
return {};
|
|
auto vmobject = AnonymousVMObject::try_create_physically_contiguous_with_size(size);
|
|
if (!vmobject) {
|
|
kernel_page_directory().range_allocator().deallocate(range.value());
|
|
return {};
|
|
}
|
|
return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, cacheable);
|
|
}
|
|
|
|
OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
|
|
{
|
|
VERIFY(!(size % PAGE_SIZE));
|
|
auto vm_object = AnonymousVMObject::try_create_with_size(size, strategy);
|
|
if (!vm_object)
|
|
return {};
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
|
|
if (!range.has_value())
|
|
return {};
|
|
return allocate_kernel_region_with_vmobject(range.value(), vm_object.release_nonnull(), name, access, cacheable);
|
|
}
|
|
|
|
OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
|
|
{
|
|
auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size);
|
|
if (!vm_object)
|
|
return {};
|
|
VERIFY(!(size % PAGE_SIZE));
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
|
|
if (!range.has_value())
|
|
return {};
|
|
return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
|
|
}
|
|
|
|
OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
|
|
{
|
|
auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size);
|
|
if (!vm_object)
|
|
return {};
|
|
VERIFY(!(size % PAGE_SIZE));
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
|
|
if (!range.has_value())
|
|
return {};
|
|
return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
|
|
}
|
|
|
|
OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(Range const& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
auto region = Region::try_create_kernel_only(range, vmobject, 0, KString::try_create(name), access, cacheable);
|
|
if (region)
|
|
region->map(kernel_page_directory());
|
|
return region;
|
|
}
|
|
|
|
OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
|
|
{
|
|
VERIFY(!(size % PAGE_SIZE));
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
|
|
if (!range.has_value())
|
|
return {};
|
|
return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable);
|
|
}
|
|
|
|
bool MemoryManager::commit_user_physical_pages(size_t page_count)
|
|
{
|
|
VERIFY(page_count > 0);
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
if (m_system_memory_info.user_physical_pages_uncommitted < page_count)
|
|
return false;
|
|
|
|
m_system_memory_info.user_physical_pages_uncommitted -= page_count;
|
|
m_system_memory_info.user_physical_pages_committed += page_count;
|
|
return true;
|
|
}
|
|
|
|
void MemoryManager::uncommit_user_physical_pages(size_t page_count)
|
|
{
|
|
VERIFY(page_count > 0);
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count);
|
|
|
|
m_system_memory_info.user_physical_pages_uncommitted += page_count;
|
|
m_system_memory_info.user_physical_pages_committed -= page_count;
|
|
}
|
|
|
|
void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
|
|
// Are we returning a user page?
|
|
for (auto& region : m_user_physical_regions) {
|
|
if (!region.contains(paddr))
|
|
continue;
|
|
|
|
region.return_page(paddr);
|
|
--m_system_memory_info.user_physical_pages_used;
|
|
|
|
// Always return pages to the uncommitted pool. Pages that were
|
|
// committed and allocated are only freed upon request. Once
|
|
// returned there is no guarantee being able to get them back.
|
|
++m_system_memory_info.user_physical_pages_uncommitted;
|
|
return;
|
|
}
|
|
|
|
// If it's not a user page, it should be a supervisor page.
|
|
for (auto& region : m_super_physical_regions) {
|
|
if (!region.contains(paddr)) {
|
|
dbgln("MM: deallocate_supervisor_physical_page: {} not in {} - {}", paddr, region.lower(), region.upper());
|
|
continue;
|
|
}
|
|
|
|
region.return_page(paddr);
|
|
--m_system_memory_info.super_physical_pages_used;
|
|
return;
|
|
}
|
|
|
|
PANIC("MM: deallocate_user_physical_page couldn't figure out region for page @ {}", paddr);
|
|
}
|
|
|
|
RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
|
|
{
|
|
VERIFY(s_mm_lock.is_locked());
|
|
RefPtr<PhysicalPage> page;
|
|
if (committed) {
|
|
// Draw from the committed pages pool. We should always have these pages available
|
|
VERIFY(m_system_memory_info.user_physical_pages_committed > 0);
|
|
m_system_memory_info.user_physical_pages_committed--;
|
|
} else {
|
|
// We need to make sure we don't touch pages that we have committed to
|
|
if (m_system_memory_info.user_physical_pages_uncommitted == 0)
|
|
return {};
|
|
m_system_memory_info.user_physical_pages_uncommitted--;
|
|
}
|
|
for (auto& region : m_user_physical_regions) {
|
|
page = region.take_free_page();
|
|
if (!page.is_null()) {
|
|
++m_system_memory_info.user_physical_pages_used;
|
|
break;
|
|
}
|
|
}
|
|
VERIFY(!committed || !page.is_null());
|
|
return page;
|
|
}
|
|
|
|
NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
auto page = find_free_user_physical_page(true);
|
|
if (should_zero_fill == ShouldZeroFill::Yes) {
|
|
auto* ptr = quickmap_page(*page);
|
|
memset(ptr, 0, PAGE_SIZE);
|
|
unquickmap_page();
|
|
}
|
|
return page.release_nonnull();
|
|
}
|
|
|
|
RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
auto page = find_free_user_physical_page(false);
|
|
bool purged_pages = false;
|
|
|
|
if (!page) {
|
|
// We didn't have a single free physical page. Let's try to free something up!
|
|
// First, we look for a purgeable VMObject in the volatile state.
|
|
for_each_vmobject([&](auto& vmobject) {
|
|
if (!vmobject.is_anonymous())
|
|
return IterationDecision::Continue;
|
|
auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
|
|
if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
|
|
return IterationDecision::Continue;
|
|
if (auto purged_page_count = anonymous_vmobject.purge()) {
|
|
dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
|
|
page = find_free_user_physical_page(false);
|
|
purged_pages = true;
|
|
VERIFY(page);
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
});
|
|
if (!page) {
|
|
dmesgln("MM: no user physical pages available");
|
|
return {};
|
|
}
|
|
}
|
|
|
|
if (should_zero_fill == ShouldZeroFill::Yes) {
|
|
auto* ptr = quickmap_page(*page);
|
|
memset(ptr, 0, PAGE_SIZE);
|
|
unquickmap_page();
|
|
}
|
|
|
|
if (did_purge)
|
|
*did_purge = purged_pages;
|
|
return page;
|
|
}
|
|
|
|
NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
|
|
{
|
|
VERIFY(!(size % PAGE_SIZE));
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
|
|
NonnullRefPtrVector<PhysicalPage> physical_pages;
|
|
|
|
for (auto& region : m_super_physical_regions) {
|
|
physical_pages = region.take_contiguous_free_pages(count);
|
|
if (!physical_pages.is_empty())
|
|
continue;
|
|
}
|
|
|
|
if (physical_pages.is_empty()) {
|
|
if (m_super_physical_regions.is_empty()) {
|
|
dmesgln("MM: no super physical regions available (?)");
|
|
}
|
|
|
|
dmesgln("MM: no super physical pages available");
|
|
VERIFY_NOT_REACHED();
|
|
return {};
|
|
}
|
|
|
|
auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
|
|
fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
|
|
m_system_memory_info.super_physical_pages_used += count;
|
|
return physical_pages;
|
|
}
|
|
|
|
RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
RefPtr<PhysicalPage> page;
|
|
|
|
for (auto& region : m_super_physical_regions) {
|
|
page = region.take_free_page();
|
|
if (!page.is_null())
|
|
break;
|
|
}
|
|
|
|
if (!page) {
|
|
if (m_super_physical_regions.is_empty()) {
|
|
dmesgln("MM: no super physical regions available (?)");
|
|
}
|
|
|
|
dmesgln("MM: no super physical pages available");
|
|
VERIFY_NOT_REACHED();
|
|
return {};
|
|
}
|
|
|
|
fast_u32_fill((u32*)page->paddr().offset(physical_to_virtual_offset).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
|
|
++m_system_memory_info.super_physical_pages_used;
|
|
return page;
|
|
}
|
|
|
|
void MemoryManager::enter_process_paging_scope(Process& process)
|
|
{
|
|
enter_space(process.space());
|
|
}
|
|
|
|
void MemoryManager::enter_space(Space& space)
|
|
{
|
|
auto current_thread = Thread::current();
|
|
VERIFY(current_thread != nullptr);
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
|
|
current_thread->regs().cr3 = space.page_directory().cr3();
|
|
write_cr3(space.page_directory().cr3());
|
|
}
|
|
|
|
void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
|
|
{
|
|
Processor::flush_tlb_local(vaddr, page_count);
|
|
}
|
|
|
|
void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
|
|
{
|
|
Processor::flush_tlb(page_directory, vaddr, page_count);
|
|
}
|
|
|
|
PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
|
|
{
|
|
VERIFY(s_mm_lock.own_lock());
|
|
auto& mm_data = get_data();
|
|
auto& pte = boot_pd_kernel_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
|
|
auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
|
|
if (pte.physical_page_base() != pd_paddr.get()) {
|
|
pte.set_physical_page_base(pd_paddr.get());
|
|
pte.set_present(true);
|
|
pte.set_writable(true);
|
|
pte.set_user_allowed(false);
|
|
// Because we must continue to hold the MM lock while we use this
|
|
// mapping, it is sufficient to only flush on the current CPU. Other
|
|
// CPUs trying to use this API must wait on the MM lock anyway
|
|
flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
|
|
} else {
|
|
// Even though we don't allow this to be called concurrently, it's
|
|
// possible that this PD was mapped on a different CPU and we don't
|
|
// broadcast the flush. If so, we still need to flush the TLB.
|
|
if (mm_data.m_last_quickmap_pd != pd_paddr)
|
|
flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
|
|
}
|
|
mm_data.m_last_quickmap_pd = pd_paddr;
|
|
return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
|
|
}
|
|
|
|
PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
|
|
{
|
|
VERIFY(s_mm_lock.own_lock());
|
|
auto& mm_data = get_data();
|
|
auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
|
|
if (pte.physical_page_base() != pt_paddr.get()) {
|
|
pte.set_physical_page_base(pt_paddr.get());
|
|
pte.set_present(true);
|
|
pte.set_writable(true);
|
|
pte.set_user_allowed(false);
|
|
// Because we must continue to hold the MM lock while we use this
|
|
// mapping, it is sufficient to only flush on the current CPU. Other
|
|
// CPUs trying to use this API must wait on the MM lock anyway
|
|
flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
|
|
} else {
|
|
// Even though we don't allow this to be called concurrently, it's
|
|
// possible that this PT was mapped on a different CPU and we don't
|
|
// broadcast the flush. If so, we still need to flush the TLB.
|
|
if (mm_data.m_last_quickmap_pt != pt_paddr)
|
|
flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
|
|
}
|
|
mm_data.m_last_quickmap_pt = pt_paddr;
|
|
return (PageTableEntry*)KERNEL_QUICKMAP_PT;
|
|
}
|
|
|
|
u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
auto& mm_data = get_data();
|
|
mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
|
|
VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
|
|
u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
|
|
|
|
auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
|
|
if (pte.physical_page_base() != physical_address.get()) {
|
|
pte.set_physical_page_base(physical_address.get());
|
|
pte.set_present(true);
|
|
pte.set_writable(true);
|
|
pte.set_user_allowed(false);
|
|
flush_tlb_local(vaddr);
|
|
}
|
|
return vaddr.as_ptr();
|
|
}
|
|
|
|
void MemoryManager::unquickmap_page()
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
auto& mm_data = get_data();
|
|
VERIFY(mm_data.m_quickmap_in_use.is_locked());
|
|
VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
|
|
u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
|
|
auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
|
|
pte.clear();
|
|
flush_tlb_local(vaddr);
|
|
mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
|
|
}
|
|
|
|
bool MemoryManager::validate_user_stack_no_lock(Space& space, VirtualAddress vaddr) const
|
|
{
|
|
VERIFY(space.get_lock().own_lock());
|
|
|
|
if (!is_user_address(vaddr))
|
|
return false;
|
|
|
|
auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
|
|
return region && region->is_user() && region->is_stack();
|
|
}
|
|
|
|
bool MemoryManager::validate_user_stack(Space& space, VirtualAddress vaddr) const
|
|
{
|
|
ScopedSpinLock lock(space.get_lock());
|
|
return validate_user_stack_no_lock(space, vaddr);
|
|
}
|
|
|
|
void MemoryManager::register_vmobject(VMObject& vmobject)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
m_vmobjects.append(vmobject);
|
|
}
|
|
|
|
void MemoryManager::unregister_vmobject(VMObject& vmobject)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
m_vmobjects.remove(vmobject);
|
|
}
|
|
|
|
void MemoryManager::register_region(Region& region)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
if (region.is_kernel())
|
|
m_kernel_regions.append(region);
|
|
else
|
|
m_user_regions.append(region);
|
|
}
|
|
|
|
void MemoryManager::unregister_region(Region& region)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
if (region.is_kernel())
|
|
m_kernel_regions.remove(region);
|
|
else
|
|
m_user_regions.remove(region);
|
|
}
|
|
|
|
void MemoryManager::dump_kernel_regions()
|
|
{
|
|
dbgln("Kernel regions:");
|
|
#if ARCH(I386)
|
|
auto addr_padding = "";
|
|
#else
|
|
auto addr_padding = " ";
|
|
#endif
|
|
dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
|
|
addr_padding, addr_padding, addr_padding);
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
for (auto& region : m_kernel_regions) {
|
|
dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
|
|
region.vaddr().get(),
|
|
region.vaddr().offset(region.size() - 1).get(),
|
|
region.size(),
|
|
region.is_readable() ? 'R' : ' ',
|
|
region.is_writable() ? 'W' : ' ',
|
|
region.is_executable() ? 'X' : ' ',
|
|
region.is_shared() ? 'S' : ' ',
|
|
region.is_stack() ? 'T' : ' ',
|
|
region.is_syscall_region() ? 'C' : ' ',
|
|
region.name());
|
|
}
|
|
}
|
|
|
|
void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
|
|
{
|
|
ScopedSpinLock lock(s_mm_lock);
|
|
ScopedSpinLock page_lock(kernel_page_directory().get_lock());
|
|
auto* pte = ensure_pte(kernel_page_directory(), vaddr);
|
|
VERIFY(pte);
|
|
if (pte->is_writable() == writable)
|
|
return;
|
|
pte->set_writable(writable);
|
|
flush_tlb(&kernel_page_directory(), vaddr);
|
|
}
|
|
|
|
}
|