mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-01 15:43:36 +03:00
849 lines
33 KiB
C++
849 lines
33 KiB
C++
/*
|
|
* Copyright (c) 2019-2020, Andrew Kaster <akaster@serenityos.org>
|
|
* Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
|
|
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2022-2023, Daniel Bertalan <dani@danielbertalan.dev>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Debug.h>
|
|
#include <AK/Optional.h>
|
|
#include <AK/QuickSort.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <LibELF/Arch/GenericDynamicRelocationType.h>
|
|
#include <LibELF/DynamicLinker.h>
|
|
#include <LibELF/DynamicLoader.h>
|
|
#include <LibELF/Hashes.h>
|
|
#include <LibELF/Validation.h>
|
|
#include <assert.h>
|
|
#include <bits/dlfcn_integration.h>
|
|
#include <dlfcn.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
|
|
#ifndef AK_OS_SERENITY
|
|
static void* mmap_with_name(void* addr, size_t length, int prot, int flags, int fd, off_t offset, char const*)
|
|
{
|
|
return mmap(addr, length, prot, flags, fd, offset);
|
|
}
|
|
|
|
# define MAP_RANDOMIZED 0
|
|
#endif
|
|
|
|
#if ARCH(AARCH64)
|
|
# define HAS_TLSDESC_SUPPORT
|
|
extern "C" {
|
|
void* __tlsdesc_static(void*);
|
|
}
|
|
#endif
|
|
|
|
namespace ELF {
|
|
|
|
Result<NonnullRefPtr<DynamicLoader>, DlErrorMessage> DynamicLoader::try_create(int fd, ByteString filepath)
|
|
{
|
|
VERIFY(filepath.starts_with('/'));
|
|
|
|
struct stat stat;
|
|
if (fstat(fd, &stat) < 0) {
|
|
return DlErrorMessage { "DynamicLoader::try_create fstat" };
|
|
}
|
|
|
|
VERIFY(stat.st_size >= 0);
|
|
auto size = static_cast<size_t>(stat.st_size);
|
|
if (size < sizeof(Elf_Ehdr))
|
|
return DlErrorMessage { ByteString::formatted("File {} has invalid ELF header", filepath) };
|
|
|
|
ByteString file_mmap_name = ByteString::formatted("ELF_DYN: {}", filepath);
|
|
auto* data = mmap_with_name(nullptr, size, PROT_READ, MAP_SHARED, fd, 0, file_mmap_name.characters());
|
|
if (data == MAP_FAILED) {
|
|
return DlErrorMessage { "DynamicLoader::try_create mmap" };
|
|
}
|
|
|
|
auto loader = adopt_ref(*new DynamicLoader(fd, move(filepath), data, size));
|
|
if (!loader->is_valid())
|
|
return DlErrorMessage { "ELF image validation failed" };
|
|
return loader;
|
|
}
|
|
|
|
DynamicLoader::DynamicLoader(int fd, ByteString filepath, void* data, size_t size)
|
|
: m_filepath(move(filepath))
|
|
, m_file_size(size)
|
|
, m_image_fd(fd)
|
|
, m_file_data(data)
|
|
{
|
|
m_elf_image = adopt_own(*new ELF::Image((u8*)m_file_data, m_file_size));
|
|
m_valid = validate();
|
|
if (m_valid)
|
|
find_tls_size_and_alignment();
|
|
else
|
|
dbgln("Image validation failed for file {}", m_filepath);
|
|
}
|
|
|
|
DynamicLoader::~DynamicLoader()
|
|
{
|
|
if (munmap(m_file_data, m_file_size) < 0) {
|
|
perror("munmap");
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
if (close(m_image_fd) < 0) {
|
|
perror("close");
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
DynamicObject const& DynamicLoader::dynamic_object() const
|
|
{
|
|
if (!m_cached_dynamic_object) {
|
|
VirtualAddress dynamic_section_address;
|
|
|
|
image().for_each_program_header([&dynamic_section_address](auto program_header) {
|
|
if (program_header.type() == PT_DYNAMIC) {
|
|
dynamic_section_address = VirtualAddress(program_header.raw_data());
|
|
}
|
|
});
|
|
VERIFY(!dynamic_section_address.is_null());
|
|
|
|
m_cached_dynamic_object = ELF::DynamicObject::create(m_filepath, VirtualAddress(image().base_address()), dynamic_section_address);
|
|
}
|
|
return *m_cached_dynamic_object;
|
|
}
|
|
|
|
void DynamicLoader::find_tls_size_and_alignment()
|
|
{
|
|
image().for_each_program_header([this](auto program_header) {
|
|
if (program_header.type() == PT_TLS) {
|
|
m_tls_size_of_current_object = program_header.size_in_memory();
|
|
auto alignment = program_header.alignment();
|
|
VERIFY(!alignment || is_power_of_two(alignment));
|
|
m_tls_alignment_of_current_object = alignment > 1 ? alignment : 0; // No need to reserve extra space for single byte alignment
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
});
|
|
}
|
|
|
|
bool DynamicLoader::validate()
|
|
{
|
|
if (!image().is_valid())
|
|
return false;
|
|
|
|
auto* elf_header = (Elf_Ehdr*)m_file_data;
|
|
if (!validate_elf_header(*elf_header, m_file_size))
|
|
return false;
|
|
auto result_or_error = validate_program_headers(*elf_header, m_file_size, { m_file_data, m_file_size });
|
|
if (result_or_error.is_error() || !result_or_error.value())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
RefPtr<DynamicObject> DynamicLoader::map()
|
|
{
|
|
if (m_dynamic_object) {
|
|
// Already mapped.
|
|
return nullptr;
|
|
}
|
|
|
|
if (!m_valid) {
|
|
dbgln("DynamicLoader::map failed: image is invalid");
|
|
return nullptr;
|
|
}
|
|
|
|
load_program_headers();
|
|
|
|
VERIFY(!m_base_address.is_null());
|
|
|
|
m_dynamic_object = DynamicObject::create(m_filepath, m_base_address, m_dynamic_section_address);
|
|
m_dynamic_object->set_tls_offset(m_tls_offset);
|
|
m_dynamic_object->set_tls_size(m_tls_size_of_current_object);
|
|
|
|
return m_dynamic_object;
|
|
}
|
|
|
|
bool DynamicLoader::link(unsigned flags)
|
|
{
|
|
return load_stage_2(flags);
|
|
}
|
|
|
|
bool DynamicLoader::load_stage_2(unsigned flags)
|
|
{
|
|
VERIFY(flags & RTLD_GLOBAL);
|
|
|
|
if (m_dynamic_object->has_text_relocations()) {
|
|
dbgln("\033[33mWarning:\033[0m Dynamic object {} has text relocations", m_dynamic_object->filepath());
|
|
for (auto& text_segment : m_text_segments) {
|
|
VERIFY(text_segment.address().get() != 0);
|
|
|
|
#ifndef AK_OS_MACOS
|
|
// Remap this text region as private.
|
|
if (mremap(text_segment.address().as_ptr(), text_segment.size(), text_segment.size(), MAP_PRIVATE) == MAP_FAILED) {
|
|
perror("mremap .text: MAP_PRIVATE");
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
if (0 > mprotect(text_segment.address().as_ptr(), text_segment.size(), PROT_READ | PROT_WRITE)) {
|
|
perror("mprotect .text: PROT_READ | PROT_WRITE"); // FIXME: dlerror?
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
// .text needs to be executable while we process relocations because it might contain IFUNC resolvers.
|
|
// We don't allow IFUNC resolvers in objects with textrels.
|
|
for (auto& text_segment : m_text_segments) {
|
|
if (mprotect(text_segment.address().as_ptr(), text_segment.size(), PROT_READ | PROT_EXEC) < 0) {
|
|
perror("mprotect .text: PROT_READ | PROT_EXEC");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
do_main_relocations();
|
|
return true;
|
|
}
|
|
|
|
void DynamicLoader::do_main_relocations()
|
|
{
|
|
do_relr_relocations();
|
|
|
|
Optional<DynamicLoader::CachedLookupResult> cached_result;
|
|
m_dynamic_object->relocation_section().for_each_relocation([&](DynamicObject::Relocation const& relocation) {
|
|
switch (do_direct_relocation(relocation, cached_result, ShouldInitializeWeak::No, ShouldCallIfuncResolver::No)) {
|
|
case RelocationResult::Failed:
|
|
dbgln("Loader.so: {} unresolved symbol '{}'", m_filepath, relocation.symbol().name());
|
|
VERIFY_NOT_REACHED();
|
|
case RelocationResult::ResolveLater:
|
|
m_unresolved_relocations.append(relocation);
|
|
break;
|
|
case RelocationResult::CallIfuncResolver:
|
|
m_direct_ifunc_relocations.append(relocation);
|
|
break;
|
|
case RelocationResult::Success:
|
|
break;
|
|
}
|
|
});
|
|
|
|
// If the object is position-independent, the pointer to the PLT trampoline needs to be relocated.
|
|
auto fixup_trampoline_pointer = [&](DynamicObject::Relocation const& relocation) {
|
|
VERIFY(static_cast<GenericDynamicRelocationType>(relocation.type()) == GenericDynamicRelocationType::JUMP_SLOT);
|
|
if (image().is_dynamic())
|
|
*((FlatPtr*)relocation.address().as_ptr()) += m_dynamic_object->base_address().get();
|
|
};
|
|
|
|
m_dynamic_object->plt_relocation_section().for_each_relocation([&](DynamicObject::Relocation const& relocation) {
|
|
if (static_cast<GenericDynamicRelocationType>(relocation.type()) == GenericDynamicRelocationType::IRELATIVE) {
|
|
m_direct_ifunc_relocations.append(relocation);
|
|
return;
|
|
}
|
|
if (static_cast<GenericDynamicRelocationType>(relocation.type()) == GenericDynamicRelocationType::TLSDESC) {
|
|
// GNU ld for some reason puts TLSDESC relocations into .rela.plt
|
|
// https://sourceware.org/bugzilla/show_bug.cgi?id=28387
|
|
|
|
VERIFY(do_direct_relocation(relocation, cached_result, ShouldInitializeWeak::No, ShouldCallIfuncResolver::No) == RelocationResult::Success);
|
|
return;
|
|
}
|
|
|
|
// FIXME: Or LD_BIND_NOW is set?
|
|
if (m_dynamic_object->must_bind_now()) {
|
|
switch (do_plt_relocation(relocation, ShouldCallIfuncResolver::No)) {
|
|
case RelocationResult::Failed:
|
|
dbgln("Loader.so: {} unresolved symbol '{}'", m_filepath, relocation.symbol().name());
|
|
VERIFY_NOT_REACHED();
|
|
case RelocationResult::ResolveLater:
|
|
VERIFY_NOT_REACHED();
|
|
case RelocationResult::CallIfuncResolver:
|
|
m_plt_ifunc_relocations.append(relocation);
|
|
// Set up lazy binding, in case an IFUNC resolver calls another IFUNC that hasn't been resolved yet.
|
|
fixup_trampoline_pointer(relocation);
|
|
break;
|
|
case RelocationResult::Success:
|
|
break;
|
|
}
|
|
} else {
|
|
fixup_trampoline_pointer(relocation);
|
|
}
|
|
});
|
|
}
|
|
|
|
Result<NonnullRefPtr<DynamicObject>, DlErrorMessage> DynamicLoader::load_stage_3(unsigned flags)
|
|
{
|
|
do_lazy_relocations();
|
|
if (flags & RTLD_LAZY) {
|
|
if (m_dynamic_object->has_plt())
|
|
setup_plt_trampoline();
|
|
}
|
|
|
|
// IFUNC resolvers can only be called after the PLT has been populated,
|
|
// as they may call arbitrary functions via the PLT.
|
|
for (auto const& relocation : m_plt_ifunc_relocations) {
|
|
auto result = do_plt_relocation(relocation, ShouldCallIfuncResolver::Yes);
|
|
VERIFY(result == RelocationResult::Success);
|
|
}
|
|
|
|
Optional<DynamicLoader::CachedLookupResult> cached_result;
|
|
for (auto const& relocation : m_direct_ifunc_relocations) {
|
|
auto result = do_direct_relocation(relocation, cached_result, ShouldInitializeWeak::No, ShouldCallIfuncResolver::Yes);
|
|
VERIFY(result == RelocationResult::Success);
|
|
}
|
|
|
|
if (m_dynamic_object->has_text_relocations()) {
|
|
// If we don't have textrels, .text has already been made executable by this point in load_stage_2.
|
|
for (auto& text_segment : m_text_segments) {
|
|
if (mprotect(text_segment.address().as_ptr(), text_segment.size(), PROT_READ | PROT_EXEC) < 0) {
|
|
return DlErrorMessage { ByteString::formatted("mprotect .text: PROT_READ | PROT_EXEC: {}", strerror(errno)) };
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_relro_segment_size) {
|
|
if (mprotect(m_relro_segment_address.as_ptr(), m_relro_segment_size, PROT_READ) < 0) {
|
|
return DlErrorMessage { ByteString::formatted("mprotect .relro: PROT_READ: {}", strerror(errno)) };
|
|
}
|
|
|
|
#ifdef AK_OS_SERENITY
|
|
if (set_mmap_name(m_relro_segment_address.as_ptr(), m_relro_segment_size, ByteString::formatted("{}: .relro", m_filepath).characters()) < 0) {
|
|
return DlErrorMessage { ByteString::formatted("set_mmap_name .relro: {}", strerror(errno)) };
|
|
}
|
|
#endif
|
|
}
|
|
|
|
m_fully_relocated = true;
|
|
|
|
return NonnullRefPtr<DynamicObject> { *m_dynamic_object };
|
|
}
|
|
|
|
void DynamicLoader::load_stage_4()
|
|
{
|
|
call_object_init_functions();
|
|
|
|
m_fully_initialized = true;
|
|
}
|
|
|
|
void DynamicLoader::do_lazy_relocations()
|
|
{
|
|
Optional<DynamicLoader::CachedLookupResult> cached_result;
|
|
for (auto const& relocation : m_unresolved_relocations) {
|
|
if (auto res = do_direct_relocation(relocation, cached_result, ShouldInitializeWeak::Yes, ShouldCallIfuncResolver::Yes); res != RelocationResult::Success) {
|
|
dbgln("Loader.so: {} unresolved symbol '{}'", m_filepath, relocation.symbol().name());
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
}
|
|
|
|
void DynamicLoader::load_program_headers()
|
|
{
|
|
FlatPtr ph_load_start = SIZE_MAX;
|
|
FlatPtr ph_load_end = 0;
|
|
|
|
// We walk the program header list once to find the requested address ranges of the program.
|
|
// We don't fill in the list of regions yet to keep malloc memory blocks from interfering with our reservation.
|
|
image().for_each_program_header([&](Image::ProgramHeader const& program_header) {
|
|
if (program_header.type() != PT_LOAD)
|
|
return;
|
|
|
|
FlatPtr section_start = program_header.vaddr().get();
|
|
FlatPtr section_end = section_start + program_header.size_in_memory();
|
|
|
|
if (ph_load_start > section_start)
|
|
ph_load_start = section_start;
|
|
|
|
if (ph_load_end < section_end)
|
|
ph_load_end = section_end;
|
|
});
|
|
|
|
void* requested_load_address = image().is_dynamic() ? nullptr : reinterpret_cast<void*>(ph_load_start);
|
|
|
|
int reservation_mmap_flags = MAP_ANON | MAP_PRIVATE | MAP_NORESERVE;
|
|
if (image().is_dynamic())
|
|
reservation_mmap_flags |= MAP_RANDOMIZED;
|
|
#ifdef MAP_FIXED_NOREPLACE
|
|
else
|
|
reservation_mmap_flags |= MAP_FIXED_NOREPLACE;
|
|
#endif
|
|
|
|
// First, we make a dummy reservation mapping, in order to allocate enough VM
|
|
// to hold all regions contiguously in the address space.
|
|
|
|
FlatPtr ph_load_base = ph_load_start & ~(FlatPtr)0xfffu;
|
|
ph_load_end = round_up_to_power_of_two(ph_load_end, PAGE_SIZE);
|
|
|
|
size_t total_mapping_size = ph_load_end - ph_load_base;
|
|
|
|
// Before we make our reservation, unmap our existing mapped ELF image that we used for reading header information.
|
|
// This leaves our pointers dangling momentarily, but it reduces the chance that we will conflict with ourselves.
|
|
if (munmap(m_file_data, m_file_size) < 0) {
|
|
perror("munmap old mapping");
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
m_elf_image = nullptr;
|
|
m_file_data = nullptr;
|
|
|
|
auto* reservation = mmap(requested_load_address, total_mapping_size, PROT_NONE, reservation_mmap_flags, 0, 0);
|
|
if (reservation == MAP_FAILED) {
|
|
perror("mmap reservation");
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
// Now that we can't accidentally block our requested space, re-map our ELF image.
|
|
ByteString file_mmap_name = ByteString::formatted("ELF_DYN: {}", m_filepath);
|
|
auto* data = mmap_with_name(nullptr, m_file_size, PROT_READ, MAP_SHARED, m_image_fd, 0, file_mmap_name.characters());
|
|
if (data == MAP_FAILED) {
|
|
perror("mmap new mapping");
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
m_file_data = data;
|
|
m_elf_image = adopt_own(*new ELF::Image((u8*)m_file_data, m_file_size));
|
|
|
|
VERIFY(requested_load_address == nullptr || reservation == requested_load_address);
|
|
|
|
m_base_address = VirtualAddress { reservation };
|
|
|
|
// Most binaries have four loadable regions, three of which are mapped
|
|
// (symbol tables/relocation information, executable instructions, read-only data)
|
|
// and one of which is copied (modifiable data).
|
|
// These are allocated in-line to cut down on the malloc calls.
|
|
Vector<ProgramHeaderRegion, 3> map_regions;
|
|
Vector<ProgramHeaderRegion, 1> copy_regions;
|
|
Optional<ProgramHeaderRegion> relro_region;
|
|
|
|
VirtualAddress dynamic_region_desired_vaddr;
|
|
|
|
image().for_each_program_header([&](Image::ProgramHeader const& program_header) {
|
|
ProgramHeaderRegion region {};
|
|
region.set_program_header(program_header.raw_header());
|
|
if (region.is_tls_template()) {
|
|
// Skip, this is handled in DynamicLoader::copy_initial_tls_data_into.
|
|
} else if (region.is_load()) {
|
|
if (region.size_in_memory() == 0)
|
|
return;
|
|
if (region.is_writable()) {
|
|
copy_regions.append(region);
|
|
} else {
|
|
map_regions.append(region);
|
|
}
|
|
} else if (region.is_dynamic()) {
|
|
dynamic_region_desired_vaddr = region.desired_load_address();
|
|
} else if (region.is_relro()) {
|
|
VERIFY(!relro_region.has_value());
|
|
relro_region = region;
|
|
}
|
|
});
|
|
|
|
VERIFY(!map_regions.is_empty() || !copy_regions.is_empty());
|
|
|
|
auto compare_load_address = [](ProgramHeaderRegion& a, ProgramHeaderRegion& b) {
|
|
return a.desired_load_address().as_ptr() < b.desired_load_address().as_ptr();
|
|
};
|
|
|
|
quick_sort(map_regions, compare_load_address);
|
|
quick_sort(copy_regions, compare_load_address);
|
|
|
|
// Pre-allocate any malloc memory needed before unmapping the reservation.
|
|
// We don't want any future malloc to accidentally mmap a reserved address!
|
|
ByteString text_segment_name = ByteString::formatted("{}: .text", m_filepath);
|
|
ByteString rodata_segment_name = ByteString::formatted("{}: .rodata", m_filepath);
|
|
ByteString data_segment_name = ByteString::formatted("{}: .data", m_filepath);
|
|
|
|
m_text_segments.ensure_capacity(map_regions.size());
|
|
|
|
// Finally, we unmap the reservation.
|
|
if (munmap(reservation, total_mapping_size) < 0) {
|
|
perror("munmap reservation");
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
// WARNING: Allocating after this point has the possibility of malloc stealing our reserved
|
|
// virtual memory addresses. Be careful not to malloc below!
|
|
|
|
// Process regions in order: .text, .data, .tls
|
|
for (auto& region : map_regions) {
|
|
FlatPtr ph_desired_base = region.desired_load_address().get();
|
|
FlatPtr ph_base = region.desired_load_address().page_base().get();
|
|
FlatPtr ph_end = ph_base + round_up_to_power_of_two(region.size_in_memory() + region.desired_load_address().get() - ph_base, PAGE_SIZE);
|
|
|
|
char const* const segment_name = region.is_executable() ? text_segment_name.characters() : rodata_segment_name.characters();
|
|
|
|
// Now we can map the text segment at the reserved address.
|
|
auto* segment_base = (u8*)mmap_with_name(
|
|
(u8*)reservation + ph_base - ph_load_base,
|
|
ph_desired_base - ph_base + region.size_in_image(),
|
|
PROT_READ,
|
|
MAP_SHARED | MAP_FIXED,
|
|
m_image_fd,
|
|
VirtualAddress { region.offset() }.page_base().get(),
|
|
segment_name);
|
|
|
|
if (segment_base == MAP_FAILED) {
|
|
perror("mmap non-writable");
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
// NOTE: Capacity ensured above the line of no malloc above
|
|
if (region.is_executable())
|
|
m_text_segments.unchecked_append({ VirtualAddress { segment_base }, ph_end - ph_base });
|
|
}
|
|
|
|
VERIFY(requested_load_address == nullptr || requested_load_address == reservation);
|
|
|
|
if (relro_region.has_value()) {
|
|
m_relro_segment_size = relro_region->size_in_memory();
|
|
m_relro_segment_address = VirtualAddress { (u8*)reservation + relro_region->desired_load_address().get() - ph_load_base };
|
|
}
|
|
|
|
if (image().is_dynamic())
|
|
m_dynamic_section_address = VirtualAddress { (u8*)reservation + dynamic_region_desired_vaddr.get() - ph_load_base };
|
|
else
|
|
m_dynamic_section_address = dynamic_region_desired_vaddr;
|
|
|
|
for (auto& region : copy_regions) {
|
|
FlatPtr ph_data_base = region.desired_load_address().page_base().get();
|
|
FlatPtr ph_data_end = ph_data_base + round_up_to_power_of_two(region.size_in_memory() + region.desired_load_address().get() - ph_data_base, PAGE_SIZE);
|
|
|
|
auto* data_segment_address = (u8*)reservation + ph_data_base - ph_load_base;
|
|
size_t data_segment_size = ph_data_end - ph_data_base;
|
|
|
|
// Finally, we make an anonymous mapping for the data segment. Contents are then copied from the file.
|
|
auto* data_segment = (u8*)mmap_with_name(
|
|
data_segment_address,
|
|
data_segment_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED,
|
|
0,
|
|
0,
|
|
data_segment_name.characters());
|
|
|
|
if (MAP_FAILED == data_segment) {
|
|
perror("mmap writable");
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
VirtualAddress data_segment_start;
|
|
if (image().is_dynamic())
|
|
data_segment_start = VirtualAddress { (u8*)reservation + region.desired_load_address().get() };
|
|
else
|
|
data_segment_start = region.desired_load_address();
|
|
|
|
VERIFY(data_segment_start.as_ptr() + region.size_in_memory() <= data_segment + data_segment_size);
|
|
|
|
memcpy(data_segment_start.as_ptr(), (u8*)m_file_data + region.offset(), region.size_in_image());
|
|
}
|
|
}
|
|
|
|
DynamicLoader::RelocationResult DynamicLoader::do_direct_relocation(DynamicObject::Relocation const& relocation,
|
|
Optional<DynamicLoader::CachedLookupResult>& cached_result,
|
|
[[maybe_unused]] ShouldInitializeWeak should_initialize_weak,
|
|
ShouldCallIfuncResolver should_call_ifunc_resolver)
|
|
{
|
|
FlatPtr* patch_ptr = nullptr;
|
|
if (is_dynamic())
|
|
patch_ptr = (FlatPtr*)(m_dynamic_object->base_address().as_ptr() + relocation.offset());
|
|
else
|
|
patch_ptr = (FlatPtr*)(FlatPtr)relocation.offset();
|
|
|
|
auto call_ifunc_resolver = [](VirtualAddress address) {
|
|
return VirtualAddress { reinterpret_cast<DynamicObject::IfuncResolver>(address.get())() };
|
|
};
|
|
|
|
auto lookup_symbol = [&](DynamicObject::Symbol const& symbol) {
|
|
// The static linker sorts relocations by the referenced symbol. Especially when vtables
|
|
// in large inheritance hierarchies are involved, there might be tens of references to
|
|
// the same symbol. We can avoid redundant lookups by keeping track of the previous result.
|
|
if (!cached_result.has_value() || !cached_result.value().symbol.definitely_equals(symbol))
|
|
cached_result = DynamicLoader::CachedLookupResult { symbol, DynamicLoader::lookup_symbol(symbol) };
|
|
return cached_result.value().result;
|
|
};
|
|
|
|
struct ResolvedTLSSymbol {
|
|
DynamicObject const& dynamic_object;
|
|
FlatPtr value;
|
|
};
|
|
|
|
auto resolve_tls_symbol = [&](DynamicObject::Relocation const& relocation) -> Optional<ResolvedTLSSymbol> {
|
|
if (relocation.symbol_index() == 0)
|
|
return ResolvedTLSSymbol { relocation.dynamic_object(), 0 };
|
|
|
|
auto res = lookup_symbol(relocation.symbol());
|
|
if (!res.has_value())
|
|
return {};
|
|
VERIFY(relocation.symbol().type() != STT_GNU_IFUNC);
|
|
VERIFY(res.value().dynamic_object != nullptr);
|
|
return ResolvedTLSSymbol { *res.value().dynamic_object, res.value().value };
|
|
};
|
|
|
|
using enum GenericDynamicRelocationType;
|
|
switch (static_cast<GenericDynamicRelocationType>(relocation.type())) {
|
|
|
|
case NONE:
|
|
// Apparently most loaders will just skip these?
|
|
// Seems if the 'link editor' generates one something is funky with your code
|
|
break;
|
|
case ABSOLUTE: {
|
|
auto symbol = relocation.symbol();
|
|
auto res = lookup_symbol(symbol);
|
|
if (!res.has_value()) {
|
|
if (symbol.bind() == STB_WEAK)
|
|
return RelocationResult::ResolveLater;
|
|
dbgln("ERROR: symbol not found: {}.", symbol.name());
|
|
return RelocationResult::Failed;
|
|
}
|
|
if (res.value().type == STT_GNU_IFUNC && should_call_ifunc_resolver == ShouldCallIfuncResolver::No)
|
|
return RelocationResult::CallIfuncResolver;
|
|
|
|
auto symbol_address = res.value().address;
|
|
if (relocation.addend_used())
|
|
*patch_ptr = symbol_address.get() + relocation.addend();
|
|
else
|
|
*patch_ptr += symbol_address.get();
|
|
if (res.value().type == STT_GNU_IFUNC)
|
|
*patch_ptr = call_ifunc_resolver(VirtualAddress { *patch_ptr }).get();
|
|
break;
|
|
}
|
|
#if !ARCH(RISCV64)
|
|
case GLOB_DAT: {
|
|
auto symbol = relocation.symbol();
|
|
auto res = lookup_symbol(symbol);
|
|
VirtualAddress symbol_location;
|
|
if (!res.has_value()) {
|
|
if (symbol.bind() == STB_WEAK) {
|
|
if (should_initialize_weak == ShouldInitializeWeak::No)
|
|
return RelocationResult::ResolveLater;
|
|
} else {
|
|
// Symbol not found
|
|
return RelocationResult::Failed;
|
|
}
|
|
|
|
symbol_location = VirtualAddress { (FlatPtr)0 };
|
|
} else {
|
|
symbol_location = res.value().address;
|
|
if (res.value().type == STT_GNU_IFUNC) {
|
|
if (should_call_ifunc_resolver == ShouldCallIfuncResolver::No)
|
|
return RelocationResult::CallIfuncResolver;
|
|
if (res.value().dynamic_object != nullptr && res.value().dynamic_object->has_text_relocations()) {
|
|
dbgln("\033[31mError:\033[0m Refusing to call IFUNC resolver defined in an object with text relocations.");
|
|
return RelocationResult::Failed;
|
|
}
|
|
symbol_location = call_ifunc_resolver(symbol_location);
|
|
}
|
|
}
|
|
VERIFY(symbol_location != m_dynamic_object->base_address());
|
|
*patch_ptr = symbol_location.get();
|
|
break;
|
|
}
|
|
#endif
|
|
case RELATIVE: {
|
|
if (!image().is_dynamic())
|
|
break;
|
|
// FIXME: According to the spec, R_386_relative ones must be done first.
|
|
// We could explicitly do them first using m_number_of_relocations from DT_RELCOUNT
|
|
// However, our compiler is nice enough to put them at the front of the relocations for us :)
|
|
if (relocation.addend_used())
|
|
*patch_ptr = m_dynamic_object->base_address().offset(relocation.addend()).get();
|
|
else
|
|
*patch_ptr += m_dynamic_object->base_address().get();
|
|
break;
|
|
}
|
|
case TLS_TPREL: {
|
|
auto maybe_resolution = resolve_tls_symbol(relocation);
|
|
if (!maybe_resolution.has_value())
|
|
break;
|
|
auto [dynamic_object_of_symbol, symbol_value] = maybe_resolution.value();
|
|
|
|
size_t addend = relocation.addend_used() ? relocation.addend() : *patch_ptr;
|
|
*patch_ptr = addend + dynamic_object_of_symbol.tls_offset().value() + symbol_value;
|
|
|
|
// At offset 0 there's the thread's ThreadSpecificData structure, we don't want to collide with it.
|
|
VERIFY(static_cast<ssize_t>(*patch_ptr) < 0);
|
|
break;
|
|
}
|
|
case TLS_DTPMOD: {
|
|
auto maybe_resolution = resolve_tls_symbol(relocation);
|
|
if (!maybe_resolution.has_value())
|
|
break;
|
|
|
|
// We repurpose the module index to store the TLS block's TP offset. This is fine
|
|
// because we currently only support a single static TLS block.
|
|
*patch_ptr = maybe_resolution->dynamic_object.tls_offset().value();
|
|
break;
|
|
}
|
|
case TLS_DTPREL: {
|
|
auto maybe_resolution = resolve_tls_symbol(relocation);
|
|
if (!maybe_resolution.has_value())
|
|
break;
|
|
|
|
size_t addend = relocation.addend_used() ? relocation.addend() : *patch_ptr;
|
|
*patch_ptr = addend + maybe_resolution->value;
|
|
break;
|
|
}
|
|
#ifdef HAS_TLSDESC_SUPPORT
|
|
case TLSDESC: {
|
|
auto maybe_resolution = resolve_tls_symbol(relocation);
|
|
if (!maybe_resolution.has_value())
|
|
break;
|
|
auto [dynamic_object_of_symbol, symbol_value] = maybe_resolution.value();
|
|
|
|
size_t addend = relocation.addend_used() ? relocation.addend() : *patch_ptr;
|
|
|
|
patch_ptr[0] = (FlatPtr)__tlsdesc_static;
|
|
patch_ptr[1] = addend + dynamic_object_of_symbol.tls_offset().value() + symbol_value;
|
|
break;
|
|
}
|
|
#endif
|
|
case IRELATIVE: {
|
|
if (should_call_ifunc_resolver == ShouldCallIfuncResolver::No)
|
|
return RelocationResult::CallIfuncResolver;
|
|
VirtualAddress resolver;
|
|
if (relocation.addend_used())
|
|
resolver = m_dynamic_object->base_address().offset(relocation.addend());
|
|
else
|
|
resolver = m_dynamic_object->base_address().offset(*patch_ptr);
|
|
|
|
if (m_dynamic_object->has_text_relocations()) {
|
|
dbgln("\033[31mError:\033[0m Refusing to call IFUNC resolver defined in an object with text relocations.");
|
|
return RelocationResult::Failed;
|
|
}
|
|
|
|
*patch_ptr = call_ifunc_resolver(resolver).get();
|
|
break;
|
|
}
|
|
case JUMP_SLOT:
|
|
VERIFY_NOT_REACHED(); // PLT relocations are handled by do_plt_relocation.
|
|
default:
|
|
// Raise the alarm! Someone needs to implement this relocation type
|
|
dbgln("Found a new exciting relocation type {}", relocation.type());
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
return RelocationResult::Success;
|
|
}
|
|
|
|
DynamicLoader::RelocationResult DynamicLoader::do_plt_relocation(DynamicObject::Relocation const& relocation, ShouldCallIfuncResolver should_call_ifunc_resolver)
|
|
{
|
|
VERIFY(static_cast<GenericDynamicRelocationType>(relocation.type()) == GenericDynamicRelocationType::JUMP_SLOT);
|
|
auto symbol = relocation.symbol();
|
|
auto* relocation_address = (FlatPtr*)relocation.address().as_ptr();
|
|
|
|
VirtualAddress symbol_location {};
|
|
if (auto result = lookup_symbol(symbol); result.has_value()) {
|
|
auto address = result.value().address;
|
|
|
|
if (result.value().type == STT_GNU_IFUNC) {
|
|
if (should_call_ifunc_resolver == ShouldCallIfuncResolver::No)
|
|
return RelocationResult::CallIfuncResolver;
|
|
symbol_location = VirtualAddress { reinterpret_cast<DynamicObject::IfuncResolver>(address.get())() };
|
|
} else {
|
|
symbol_location = address;
|
|
}
|
|
} else if (symbol.bind() != STB_WEAK) {
|
|
return RelocationResult::Failed;
|
|
}
|
|
|
|
dbgln_if(DYNAMIC_LOAD_DEBUG, "DynamicLoader: Jump slot relocation: putting {} ({}) into PLT at {}", symbol.name(), symbol_location, (void*)relocation_address);
|
|
*relocation_address = symbol_location.get();
|
|
|
|
return RelocationResult::Success;
|
|
}
|
|
|
|
void DynamicLoader::do_relr_relocations()
|
|
{
|
|
auto base_address = m_dynamic_object->base_address().get();
|
|
m_dynamic_object->for_each_relr_relocation([base_address](FlatPtr address) {
|
|
*(FlatPtr*)address += base_address;
|
|
});
|
|
}
|
|
|
|
void DynamicLoader::copy_initial_tls_data_into(ByteBuffer& buffer) const
|
|
{
|
|
image().for_each_program_header([this, &buffer](ELF::Image::ProgramHeader program_header) {
|
|
if (program_header.type() != PT_TLS)
|
|
return IterationDecision::Continue;
|
|
|
|
// Note: The "size in image" is only concerned with initialized data. Uninitialized data (.tbss) is
|
|
// only included in the "size in memory" metric, and is expected to not be touched or read from, as
|
|
// it is not present in the image and zeroed out in-memory. We will still check that the buffer has
|
|
// space for both the initialized and the uninitialized data.
|
|
// Note: The m_tls_offset here is (of course) negative.
|
|
// TODO: Is the initialized data always in the beginning of the TLS segment, or should we walk the
|
|
// sections to figure that out?
|
|
size_t tls_start_in_buffer = buffer.size() + m_tls_offset;
|
|
VERIFY(program_header.size_in_image() <= program_header.size_in_memory());
|
|
VERIFY(program_header.size_in_memory() <= m_tls_size_of_current_object);
|
|
VERIFY(tls_start_in_buffer + program_header.size_in_memory() <= buffer.size());
|
|
memcpy(buffer.data() + tls_start_in_buffer, static_cast<const u8*>(m_file_data) + program_header.offset(), program_header.size_in_image());
|
|
|
|
return IterationDecision::Break;
|
|
});
|
|
}
|
|
|
|
// Defined in <arch>/plt_trampoline.S
|
|
extern "C" void _plt_trampoline(void) __attribute__((visibility("hidden")));
|
|
|
|
void DynamicLoader::setup_plt_trampoline()
|
|
{
|
|
VERIFY(m_dynamic_object);
|
|
VERIFY(m_dynamic_object->has_plt());
|
|
VirtualAddress got_address = m_dynamic_object->plt_got_base_address();
|
|
|
|
auto* got_ptr = (FlatPtr*)got_address.as_ptr();
|
|
|
|
#if ARCH(AARCH64) || ARCH(X86_64)
|
|
got_ptr[1] = (FlatPtr)m_dynamic_object.ptr();
|
|
got_ptr[2] = (FlatPtr)&_plt_trampoline;
|
|
#elif ARCH(RISCV64)
|
|
got_ptr[0] = (FlatPtr)&_plt_trampoline;
|
|
got_ptr[1] = (FlatPtr)m_dynamic_object.ptr();
|
|
#else
|
|
# error Unknown architecture
|
|
#endif
|
|
}
|
|
|
|
// Called from our ASM routine _plt_trampoline.
|
|
extern "C" FlatPtr _fixup_plt_entry(DynamicObject* object, u32 relocation_offset)
|
|
{
|
|
auto const& relocation = object->plt_relocation_section().relocation_at_offset(relocation_offset);
|
|
auto result = DynamicLoader::do_plt_relocation(relocation, ShouldCallIfuncResolver::Yes);
|
|
if (result != DynamicLoader::RelocationResult::Success) {
|
|
dbgln("Loader.so: {} unresolved symbol '{}'", object->filepath(), relocation.symbol().name());
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
return *reinterpret_cast<FlatPtr*>(relocation.address().as_ptr());
|
|
}
|
|
|
|
void DynamicLoader::call_object_init_functions()
|
|
{
|
|
typedef void (*InitFunc)();
|
|
|
|
if (m_dynamic_object->has_init_section()) {
|
|
auto init_function = m_dynamic_object->init_section_function();
|
|
(init_function)();
|
|
}
|
|
|
|
if (m_dynamic_object->has_init_array_section()) {
|
|
auto init_array_section = m_dynamic_object->init_array_section();
|
|
|
|
InitFunc* init_begin = (InitFunc*)(init_array_section.address().as_ptr());
|
|
InitFunc* init_end = init_begin + init_array_section.entry_count();
|
|
while (init_begin != init_end) {
|
|
// Android sources claim that these can be -1, to be ignored.
|
|
// 0 definitely shows up. Apparently 0/-1 are valid? Confusing.
|
|
if (!*init_begin || ((FlatPtr)*init_begin == (FlatPtr)-1))
|
|
continue;
|
|
(*init_begin)();
|
|
++init_begin;
|
|
}
|
|
}
|
|
}
|
|
|
|
Optional<DynamicObject::SymbolLookupResult> DynamicLoader::lookup_symbol(const ELF::DynamicObject::Symbol& symbol)
|
|
{
|
|
if (symbol.is_undefined() || symbol.bind() == STB_WEAK)
|
|
return DynamicLinker::lookup_global_symbol(symbol.name());
|
|
|
|
return DynamicObject::SymbolLookupResult { symbol.value(), symbol.size(), symbol.address(), symbol.bind(), symbol.type(), &symbol.object() };
|
|
}
|
|
|
|
} // end namespace ELF
|