ladybird/Kernel/MemoryManager.cpp
Andreas Kling 9e62eb4856 Only COW on fault if the physical page has retain_count > 1.
This makes COW pages lazily-but-transparently revert back to read/write.
2018-11-05 14:11:21 +01:00

565 lines
19 KiB
C++

#include "MemoryManager.h"
#include <AK/Assertions.h>
#include <AK/kstdio.h>
#include <AK/kmalloc.h>
#include "i386.h"
#include "StdLib.h"
#include "Process.h"
//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG
#define SCRUB_DEALLOCATED_PAGE_TABLES
static MemoryManager* s_the;
MemoryManager& MM
{
return *s_the;
}
MemoryManager::MemoryManager()
{
m_kernel_page_directory = (PageDirectory*)0x4000;
m_pageTableZero = (dword*)0x6000;
m_pageTableOne = (dword*)0x7000;
m_next_laddr.set(0xd0000000);
initializePaging();
}
MemoryManager::~MemoryManager()
{
}
void MemoryManager::populate_page_directory(PageDirectory& page_directory)
{
memset(&page_directory, 0, sizeof(PageDirectory));
page_directory.entries[0] = m_kernel_page_directory->entries[0];
page_directory.entries[1] = m_kernel_page_directory->entries[1];
}
void MemoryManager::release_page_directory(PageDirectory& page_directory)
{
ASSERT_INTERRUPTS_DISABLED();
#ifdef MM_DEBUG
dbgprintf("MM: release_page_directory for PD K%x\n", &page_directory);
#endif
for (size_t i = 0; i < 1024; ++i) {
auto& page_table = page_directory.physical_pages[i];
if (!page_table.is_null()) {
#ifdef MM_DEBUG
dbgprintf("MM: deallocating user page table P%x\n", page_table->paddr().get());
#endif
deallocate_page_table(page_directory, i);
}
}
#ifdef SCRUB_DEALLOCATED_PAGE_TABLES
memset(&page_directory, 0xc9, sizeof(PageDirectory));
#endif
}
void MemoryManager::initializePaging()
{
static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
memset(m_pageTableZero, 0, PAGE_SIZE);
memset(m_pageTableOne, 0, PAGE_SIZE);
memset(m_kernel_page_directory, 0, sizeof(PageDirectory));
#ifdef MM_DEBUG
dbgprintf("MM: Kernel page directory @ %p\n", m_kernel_page_directory);
#endif
// Make null dereferences crash.
protectMap(LinearAddress(0), PAGE_SIZE);
// The bottom 4 MB are identity mapped & supervisor only. Every process shares these mappings.
create_identity_mapping(LinearAddress(PAGE_SIZE), 4 * MB);
// The physical pages 4 MB through 8 MB are available for allocation.
for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE)
m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i))));
asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
asm volatile(
"movl %cr0, %eax\n"
"orl $0x80000001, %eax\n"
"movl %eax, %cr0\n"
);
}
RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
{
auto& page_directory_physical_ptr = page_directory.physical_pages[index];
ASSERT(!page_directory_physical_ptr);
auto ppages = allocate_physical_pages(1);
ASSERT(ppages.size() == 1);
dword address = ppages[0]->paddr().get();
create_identity_mapping(LinearAddress(address), PAGE_SIZE);
memset((void*)address, 0, PAGE_SIZE);
page_directory.physical_pages[index] = move(ppages[0]);
return page_directory.physical_pages[index];
}
void MemoryManager::deallocate_page_table(PageDirectory& page_directory, unsigned index)
{
auto& physical_page = page_directory.physical_pages[index];
ASSERT(physical_page);
//FIXME: This line is buggy and effectful somehow :(
//ASSERT(!m_free_physical_pages.contains_slow(physical_page));
for (size_t i = 0; i < MM.m_free_physical_pages.size(); ++i) {
ASSERT(MM.m_free_physical_pages[i].ptr() != physical_page.ptr());
}
remove_identity_mapping(LinearAddress(physical_page->paddr().get()), PAGE_SIZE);
page_directory.physical_pages[index] = nullptr;
}
void MemoryManager::remove_identity_mapping(LinearAddress laddr, size_t size)
{
InterruptDisabler disabler;
// FIXME: ASSERT(laddr is 4KB aligned);
for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
auto pte_address = laddr.offset(offset);
auto pte = ensurePTE(m_kernel_page_directory, pte_address);
pte.setPhysicalPageBase(0);
pte.setUserAllowed(false);
pte.setPresent(true);
pte.setWritable(true);
flushTLB(pte_address);
}
}
auto MemoryManager::ensurePTE(PageDirectory* page_directory, LinearAddress laddr) -> PageTableEntry
{
ASSERT_INTERRUPTS_DISABLED();
dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
dword page_table_index = (laddr.get() >> 12) & 0x3ff;
PageDirectoryEntry pde = PageDirectoryEntry(&page_directory->entries[page_directory_index]);
if (!pde.isPresent()) {
#ifdef MM_DEBUG
dbgprintf("MM: PDE %u not present, allocating\n", page_directory_index);
#endif
if (page_directory_index == 0) {
ASSERT(page_directory == m_kernel_page_directory);
pde.setPageTableBase((dword)m_pageTableZero);
pde.setUserAllowed(false);
pde.setPresent(true);
pde.setWritable(true);
} else if (page_directory_index == 1) {
ASSERT(page_directory == m_kernel_page_directory);
pde.setPageTableBase((dword)m_pageTableOne);
pde.setUserAllowed(false);
pde.setPresent(true);
pde.setWritable(true);
} else {
auto page_table = allocate_page_table(*page_directory, page_directory_index);
#ifdef MM_DEBUG
dbgprintf("MM: PD K%x (%s) allocated page table #%u (for L%x) at P%x\n",
page_directory,
page_directory == m_kernel_page_directory ? "Kernel" : "User",
page_directory_index,
laddr.get(),
page_table->paddr().get());
#endif
pde.setPageTableBase(page_table->paddr().get());
pde.setUserAllowed(true);
pde.setPresent(true);
pde.setWritable(true);
page_directory->physical_pages[page_directory_index] = move(page_table);
}
}
return PageTableEntry(&pde.pageTableBase()[page_table_index]);
}
void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
{
InterruptDisabler disabler;
// FIXME: ASSERT(linearAddress is 4KB aligned);
for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
auto pteAddress = linearAddress.offset(offset);
auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
pte.setPhysicalPageBase(pteAddress.get());
pte.setUserAllowed(false);
pte.setPresent(false);
pte.setWritable(false);
flushTLB(pteAddress);
}
}
void MemoryManager::create_identity_mapping(LinearAddress laddr, size_t size)
{
InterruptDisabler disabler;
// FIXME: ASSERT(laddr is 4KB aligned);
for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
auto pteAddress = laddr.offset(offset);
auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
pte.setPhysicalPageBase(pteAddress.get());
pte.setUserAllowed(false);
pte.setPresent(true);
pte.setWritable(true);
flushTLB(pteAddress);
}
}
void MemoryManager::initialize()
{
s_the = new MemoryManager;
}
Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
{
ASSERT_INTERRUPTS_DISABLED();
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
for (auto& region : process.m_regions) {
if (region->contains(laddr))
return region.ptr();
}
ASSERT_NOT_REACHED();
}
bool MemoryManager::copy_on_write(Process& process, Region& region, unsigned page_index_in_region)
{
ASSERT_INTERRUPTS_DISABLED();
if (region.physical_pages[page_index_in_region]->retain_count() == 1) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
#endif
region.cow_map.set(page_index_in_region, false);
remap_region_page(process.m_page_directory, region, page_index_in_region, true);
return true;
}
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> It's a COW page and it's time to COW!\n");
#endif
auto physical_page_to_copy = move(region.physical_pages[page_index_in_region]);
auto ppages = allocate_physical_pages(1);
ASSERT(ppages.size() == 1);
byte* dest_ptr = quickmap_page(*ppages[0]);
const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> COW P%x <- P%x\n", ppages[0]->paddr().get(), physical_page_to_copy->paddr().get());
#endif
memcpy(dest_ptr, src_ptr, PAGE_SIZE);
region.physical_pages[page_index_in_region] = move(ppages[0]);
unquickmap_page();
region.cow_map.set(page_index_in_region, false);
remap_region_page(process.m_page_directory, region, page_index_in_region, true);
return true;
}
PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
{
ASSERT_INTERRUPTS_DISABLED();
#ifdef PAGE_FAULT_DEBUG
dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
#endif
auto* region = region_from_laddr(*current, fault.laddr());
ASSERT(region);
auto page_index_in_region = region->page_index_from_address(fault.laddr());
if (fault.is_not_present()) {
kprintf(" >> NP fault in Region{%p}[%u]\n", region, page_index_in_region);
} else if (fault.is_protection_violation()) {
if (region->cow_map.get(page_index_in_region)) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> PV (COW) fault in Region{%p}[%u]\n", region, page_index_in_region);
#endif
bool success = copy_on_write(*current, *region, page_index_in_region);
ASSERT(success);
return PageFaultResponse::Continue;
}
kprintf(" >> PV fault in Region{%p}[%u]\n", region, page_index_in_region);
} else {
ASSERT_NOT_REACHED();
}
return PageFaultResponse::ShouldCrash;
}
Vector<RetainPtr<PhysicalPage>> MemoryManager::allocate_physical_pages(size_t count)
{
InterruptDisabler disabler;
if (count > m_free_physical_pages.size())
return { };
Vector<RetainPtr<PhysicalPage>> pages;
pages.ensureCapacity(count);
for (size_t i = 0; i < count; ++i) {
pages.append(m_free_physical_pages.takeLast());
#ifdef MM_DEBUG
dbgprintf("MM: allocate_physical_pages vending P%x\n", pages.last()->paddr().get());
#endif
}
return pages;
}
void MemoryManager::enter_kernel_paging_scope()
{
InterruptDisabler disabler;
current->m_tss.cr3 = (dword)m_kernel_page_directory;
asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory):"memory");
}
void MemoryManager::enter_process_paging_scope(Process& process)
{
InterruptDisabler disabler;
current->m_tss.cr3 = (dword)process.m_page_directory;
asm volatile("movl %%eax, %%cr3"::"a"(process.m_page_directory):"memory");
}
void MemoryManager::flushEntireTLB()
{
asm volatile(
"mov %cr3, %eax\n"
"mov %eax, %cr3\n"
);
}
void MemoryManager::flushTLB(LinearAddress laddr)
{
asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
}
byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
{
ASSERT_INTERRUPTS_DISABLED();
auto page_laddr = LinearAddress(4 * MB);
auto pte = ensurePTE(m_kernel_page_directory, page_laddr);
pte.setPhysicalPageBase(physical_page.paddr().get());
pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
pte.setWritable(true);
pte.setUserAllowed(false);
flushTLB(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> quickmap_page L%x => P%x\n", page_laddr, physical_page.paddr().get());
#endif
return page_laddr.asPtr();
}
void MemoryManager::unquickmap_page()
{
ASSERT_INTERRUPTS_DISABLED();
auto page_laddr = LinearAddress(4 * MB);
auto pte = ensurePTE(m_kernel_page_directory, page_laddr);
#ifdef MM_DEBUG
auto old_physical_address = pte.physicalPageBase();
#endif
pte.setPhysicalPageBase(0);
pte.setPresent(false);
pte.setWritable(false);
pte.setUserAllowed(false);
flushTLB(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
#endif
}
void MemoryManager::remap_region_page(PageDirectory* page_directory, Region& region, unsigned page_index_in_region, bool user_allowed)
{
InterruptDisabler disabler;
auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE);
auto pte = ensurePTE(page_directory, page_laddr);
auto& physical_page = region.physical_pages[page_index_in_region];
ASSERT(physical_page);
pte.setPhysicalPageBase(physical_page->paddr().get());
pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
if (region.cow_map.get(page_index_in_region))
pte.setWritable(false);
else
pte.setWritable(region.is_writable);
pte.setUserAllowed(user_allowed);
flushTLB(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> remap_region_page (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
#endif
}
void MemoryManager::remap_region(Process& process, Region& region)
{
InterruptDisabler disabler;
map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
}
void MemoryManager::map_region_at_address(PageDirectory* page_directory, Region& region, LinearAddress laddr, bool user_allowed)
{
InterruptDisabler disabler;
for (size_t i = 0; i < region.physical_pages.size(); ++i) {
auto page_laddr = laddr.offset(i * PAGE_SIZE);
auto pte = ensurePTE(page_directory, page_laddr);
auto& physical_page = region.physical_pages[i];
if (physical_page) {
pte.setPhysicalPageBase(physical_page->paddr().get());
pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
if (region.cow_map.get(i))
pte.setWritable(false);
else
pte.setWritable(region.is_writable);
} else {
pte.setPhysicalPageBase(0);
pte.setPresent(false);
pte.setWritable(region.is_writable);
}
pte.setUserAllowed(user_allowed);
flushTLB(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
#endif
}
}
void MemoryManager::unmap_range(PageDirectory* page_directory, LinearAddress laddr, size_t size)
{
ASSERT((size % PAGE_SIZE) == 0);
InterruptDisabler disabler;
size_t numPages = size / PAGE_SIZE;
for (size_t i = 0; i < numPages; ++i) {
auto page_laddr = laddr.offset(i * PAGE_SIZE);
auto pte = ensurePTE(page_directory, page_laddr);
pte.setPhysicalPageBase(0);
pte.setPresent(false);
pte.setWritable(false);
pte.setUserAllowed(false);
flushTLB(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
#endif
}
}
LinearAddress MemoryManager::allocate_linear_address_range(size_t size)
{
ASSERT((size % PAGE_SIZE) == 0);
// FIXME: Recycle ranges!
auto laddr = m_next_laddr;
m_next_laddr.set(m_next_laddr.get() + size);
return laddr;
}
byte* MemoryManager::create_kernel_alias_for_region(Region& region)
{
InterruptDisabler disabler;
#ifdef MM_DEBUG
dbgprintf("MM: create_kernel_alias_for_region region=%p (L%x size=%u)\n", &region, region.linearAddress.get(), region.size);
#endif
auto laddr = allocate_linear_address_range(region.size);
map_region_at_address(m_kernel_page_directory, region, laddr, false);
#ifdef MM_DEBUG
dbgprintf("MM: Created alias L%x for L%x\n", laddr.get(), region.linearAddress.get());
#endif
return laddr.asPtr();
}
void MemoryManager::remove_kernel_alias_for_region(Region& region, byte* addr)
{
#ifdef MM_DEBUG
dbgprintf("remove_kernel_alias_for_region region=%p, addr=L%x\n", &region, addr);
#endif
unmap_range(m_kernel_page_directory, LinearAddress((dword)addr), region.size);
}
bool MemoryManager::unmapRegion(Process& process, Region& region)
{
InterruptDisabler disabler;
for (size_t i = 0; i < region.physical_pages.size(); ++i) {
auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
auto pte = ensurePTE(process.m_page_directory, laddr);
pte.setPhysicalPageBase(0);
pte.setPresent(false);
pte.setWritable(false);
pte.setUserAllowed(false);
flushTLB(laddr);
#ifdef MM_DEBUG
auto& physical_page = region.physical_pages[i];
dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
#endif
}
return true;
}
bool MemoryManager::mapRegion(Process& process, Region& region)
{
map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
return true;
}
bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
{
dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
if (!pde.isPresent())
return false;
auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
if (!pte.isPresent())
return false;
if (!pte.isUserAllowed())
return false;
return true;
}
bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
{
dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
if (!pde.isPresent())
return false;
auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
if (!pte.isPresent())
return false;
if (!pte.isUserAllowed())
return false;
if (!pte.isWritable())
return false;
return true;
}
RetainPtr<Region> Region::clone()
{
InterruptDisabler disabler;
if (is_readable && !is_writable) {
// Create a new region backed by the same physical pages.
return adopt(*new Region(linearAddress, size, physical_pages, String(name), is_readable, is_writable));
}
// Set up a COW region. The parent (this) region becomes COW as well!
for (size_t i = 0; i < physical_pages.size(); ++i)
cow_map.set(i, true);
MM.remap_region(*current, *this);
return adopt(*new Region(linearAddress, size, physical_pages, String(name), is_readable, is_writable, true));
}
Region::Region(LinearAddress a, size_t s, Vector<RetainPtr<PhysicalPage>> pp, String&& n, bool r, bool w, bool cow)
: linearAddress(a)
, size(s)
, physical_pages(move(pp))
, name(move(n))
, is_readable(r)
, is_writable(w)
, cow_map(Bitmap::create(physical_pages.size(), cow))
{
}
Region::~Region()
{
}
void PhysicalPage::return_to_freelist()
{
InterruptDisabler disabler;
m_retain_count = 1;
MM.m_free_physical_pages.append(adopt(*this));
#ifdef MM_DEBUG
dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
#endif
}