ladybird/Userland/Libraries/LibC/stdlib.cpp
davidot 1986b8b066 LibC: Make strtod use the new exact number parser
Because strtod need to set ERANGE and track the last character we have
to check the resulting value. We also have to check for nan and inf in
strtod itself as the new double parser doesn't accept that as floating
points.
2022-10-23 15:48:45 +02:00

1235 lines
34 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/CharacterTypes.h>
#include <AK/FloatingPointStringConversions.h>
#include <AK/HashMap.h>
#include <AK/Noncopyable.h>
#include <AK/Random.h>
#include <AK/StdLibExtras.h>
#include <AK/Types.h>
#include <AK/Utf8View.h>
#include <LibELF/AuxiliaryVector.h>
#include <alloca.h>
#include <assert.h>
#include <bits/pthread_cancel.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <spawn.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/internals.h>
#include <sys/ioctl.h>
#include <sys/ioctl_numbers.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <sys/wait.h>
#include <syscall.h>
#include <unistd.h>
#include <wchar.h>
static void strtons(char const* str, char** endptr)
{
assert(endptr);
char* ptr = const_cast<char*>(str);
while (isspace(*ptr)) {
ptr += 1;
}
*endptr = ptr;
}
enum Sign {
Negative,
Positive,
};
static Sign strtosign(char const* str, char** endptr)
{
assert(endptr);
if (*str == '+') {
*endptr = const_cast<char*>(str + 1);
return Sign::Positive;
} else if (*str == '-') {
*endptr = const_cast<char*>(str + 1);
return Sign::Negative;
} else {
*endptr = const_cast<char*>(str);
return Sign::Positive;
}
}
enum DigitConsumeDecision {
Consumed,
PosOverflow,
NegOverflow,
Invalid,
};
template<typename T, T min_value, T max_value>
class NumParser {
AK_MAKE_NONMOVABLE(NumParser);
public:
NumParser(Sign sign, int base)
: m_base(base)
, m_num(0)
, m_sign(sign)
{
m_cutoff = positive() ? (max_value / base) : (min_value / base);
m_max_digit_after_cutoff = positive() ? (max_value % base) : (min_value % base);
}
int parse_digit(char ch)
{
int digit;
if (isdigit(ch))
digit = ch - '0';
else if (islower(ch))
digit = ch - ('a' - 10);
else if (isupper(ch))
digit = ch - ('A' - 10);
else
return -1;
if (static_cast<T>(digit) >= m_base)
return -1;
return digit;
}
DigitConsumeDecision consume(char ch)
{
int digit = parse_digit(ch);
if (digit == -1)
return DigitConsumeDecision::Invalid;
if (!can_append_digit(digit)) {
if (m_sign != Sign::Negative) {
return DigitConsumeDecision::PosOverflow;
} else {
return DigitConsumeDecision::NegOverflow;
}
}
m_num *= m_base;
m_num += positive() ? digit : -digit;
return DigitConsumeDecision::Consumed;
}
T number() const { return m_num; };
private:
bool can_append_digit(int digit)
{
bool const is_below_cutoff = positive() ? (m_num < m_cutoff) : (m_num > m_cutoff);
if (is_below_cutoff) {
return true;
} else {
return m_num == m_cutoff && digit <= m_max_digit_after_cutoff;
}
}
bool positive() const
{
return m_sign != Sign::Negative;
}
const T m_base;
T m_num;
T m_cutoff;
int m_max_digit_after_cutoff;
Sign m_sign;
};
typedef NumParser<int, INT_MIN, INT_MAX> IntParser;
typedef NumParser<long long, LONG_LONG_MIN, LONG_LONG_MAX> LongLongParser;
typedef NumParser<unsigned long long, 0ULL, ULONG_LONG_MAX> ULongLongParser;
static bool is_either(char* str, int offset, char lower, char upper)
{
char ch = *(str + offset);
return ch == lower || ch == upper;
}
template<typename Callback>
inline int generate_unique_filename(char* pattern, size_t suffix_length, Callback callback)
{
size_t length = strlen(pattern);
if (length < 6 + suffix_length || memcmp(pattern + length - 6 - suffix_length, "XXXXXX", 6))
return EINVAL;
size_t start = length - 6 - suffix_length;
constexpr char random_characters[] = "abcdefghijklmnopqrstuvwxyz0123456789";
for (int attempt = 0; attempt < 100; ++attempt) {
for (int i = 0; i < 6; ++i)
pattern[start + i] = random_characters[(arc4random() % (sizeof(random_characters) - 1))];
if (callback() == IterationDecision::Break)
return 0;
}
return EEXIST;
}
static bool is_infinity_string(char* parse_ptr, char** endptr)
{
if (is_either(parse_ptr, 0, 'i', 'I')) {
if (is_either(parse_ptr, 1, 'n', 'N')) {
if (is_either(parse_ptr, 2, 'f', 'F')) {
parse_ptr += 3;
if (is_either(parse_ptr, 0, 'i', 'I')) {
if (is_either(parse_ptr, 1, 'n', 'N')) {
if (is_either(parse_ptr, 2, 'i', 'I')) {
if (is_either(parse_ptr, 3, 't', 'T')) {
if (is_either(parse_ptr, 4, 'y', 'Y')) {
parse_ptr += 5;
}
}
}
}
}
if (endptr)
*endptr = parse_ptr;
return true;
}
}
}
return false;
}
static bool is_nan_string(char* parse_ptr, char** endptr)
{
// FIXME: Actually parse (or at least skip) the (n-char-sequenceopt) part
if (is_either(parse_ptr, 0, 'n', 'N')) {
if (is_either(parse_ptr, 1, 'a', 'A')) {
if (is_either(parse_ptr, 2, 'n', 'N')) {
if (endptr)
*endptr = parse_ptr + 3;
return true;
}
}
}
return false;
}
template<FloatingPoint T>
static T c_str_to_floating_point(char const* str, char** endptr)
{
// First, they decompose the input string into three parts:
char* parse_ptr = const_cast<char*>(str);
// An initial, possibly empty, sequence of white-space characters (as specified by isspace())
strtons(parse_ptr, &parse_ptr);
// A subject sequence interpreted as a floating-point constant or representing infinity or NaN
if (*parse_ptr == '\0') {
if (endptr)
*endptr = const_cast<char*>(str);
return 0.;
}
bool is_hex = [&] {
// A hexfloat must start with either 0x, 0X, -0x or -0X and have something after it
char const* parse_head = parse_ptr;
if (*parse_head == '-')
++parse_head;
if (*parse_head != '0')
return false;
++parse_head;
if (*parse_head != 'x')
return false;
++parse_head;
// We must have at least one digit but it can come after the "decimal" point.
if (is_ascii_hex_digit(*parse_head))
return true;
if (*parse_head != '.')
return false;
++parse_head;
return is_ascii_hex_digit(*parse_head);
}();
AK::FloatingPointParseResults<T> double_parse_result;
if (is_hex) {
// A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix character;
// then an optional binary exponent part consisting of the character 'p' or the character 'P',
// optionally followed by a '+' or '-' character, and then followed by one or more decimal digits
double_parse_result = AK::parse_first_hexfloat_until_zero_character<T>(parse_ptr);
} else {
// A non-empty sequence of decimal digits optionally containing a radix character;
// then an optional exponent part consisting of the character 'e' or the character 'E',
// optionally followed by a '+' or '-' character, and then followed by one or more decimal digits
double_parse_result = AK::parse_first_floating_point_until_zero_character<T>(parse_ptr);
}
if (double_parse_result.error == AK::FloatingPointError::None) {
// The only way to get NaN (which we shouldn't) or infinities is rounding up to them so we
// have to set ERANGE in that case.
if (!__builtin_isfinite(double_parse_result.value))
errno = ERANGE;
if (endptr)
*endptr = const_cast<char*>(double_parse_result.end_ptr);
return double_parse_result.value;
}
if (double_parse_result.error == AK::FloatingPointError::RoundedDownToZero || double_parse_result.error == AK::FloatingPointError::OutOfRange) {
// This is a special case for strtod, where we have a double so close to zero we had to round
// it to zero, in which case we have to set ERANGE
errno = ERANGE;
if (endptr)
*endptr = const_cast<char*>(double_parse_result.end_ptr);
return double_parse_result.value;
}
// The only way we are here is if the input was not valid for parse_first_floating_point or not a valid hex float
// So the only cases left are:
// - One of INF or INFINITY, ignoring case
// - One of NAN or NAN(n-char-sequenceopt), ignoring case in the NAN part
const Sign sign = strtosign(parse_ptr, &parse_ptr);
if (is_infinity_string(parse_ptr, endptr)) {
// Don't set errno to ERANGE here:
// The caller may want to distinguish between "input is
// literal infinity" and "input is not literal infinity
// but did not fit into double".
if (sign != Sign::Negative)
return static_cast<T>(__builtin_huge_val());
else
return static_cast<T>(-__builtin_huge_val());
}
if (is_nan_string(parse_ptr, endptr)) {
errno = ERANGE;
// FIXME: Do we actually want to return "different" NaN bit values?
if (sign != Sign::Negative)
return static_cast<T>(__builtin_nan(""));
else
return static_cast<T>(-__builtin_nan(""));
}
// If no conversion could be performed, 0 shall be returned, and errno may be set to [EINVAL].
// FIXME: This is in the posix standard linked from strtod but not in implementations of strtod
// and not in the man pages for linux strtod.
if (endptr)
*endptr = const_cast<char*>(str);
return 0;
}
extern "C" {
void exit(int status)
{
__cxa_finalize(nullptr);
if (secure_getenv("LIBC_DUMP_MALLOC_STATS"))
serenity_dump_malloc_stats();
extern void _fini();
_fini();
fflush(nullptr);
#ifndef _DYNAMIC_LOADER
__pthread_key_destroy_for_current_thread();
#endif
_exit(status);
}
static void __atexit_to_cxa_atexit(void* handler)
{
reinterpret_cast<void (*)()>(handler)();
}
int atexit(void (*handler)())
{
return __cxa_atexit(__atexit_to_cxa_atexit, (void*)handler, nullptr);
}
void _abort()
{
// According to the GCC manual __builtin_trap() can call abort() so using it here might not seem safe at first. However,
// on all the platforms we support GCC emits an undefined instruction instead of a call.
__builtin_trap();
}
void abort()
{
// For starters, send ourselves a SIGABRT.
raise(SIGABRT);
// If that didn't kill us, try harder.
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGABRT);
sigprocmask(SIG_UNBLOCK, &set, nullptr);
raise(SIGABRT);
_abort();
}
static HashTable<FlatPtr> s_malloced_environment_variables;
static void free_environment_variable_if_needed(char const* var)
{
if (!s_malloced_environment_variables.contains((FlatPtr)var))
return;
free(const_cast<char*>(var));
s_malloced_environment_variables.remove((FlatPtr)var);
}
char* getenv(char const* name)
{
size_t vl = strlen(name);
for (size_t i = 0; environ[i]; ++i) {
char const* decl = environ[i];
char* eq = strchr(decl, '=');
if (!eq)
continue;
size_t varLength = eq - decl;
if (vl != varLength)
continue;
if (strncmp(decl, name, varLength) == 0) {
return eq + 1;
}
}
return nullptr;
}
char* secure_getenv(char const* name)
{
if (getauxval(AT_SECURE))
return nullptr;
return getenv(name);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/unsetenv.html
int unsetenv(char const* name)
{
auto new_var_len = strlen(name);
size_t environ_size = 0;
int skip = -1;
for (; environ[environ_size]; ++environ_size) {
char* old_var = environ[environ_size];
char* old_eq = strchr(old_var, '=');
VERIFY(old_eq);
size_t old_var_len = old_eq - old_var;
if (new_var_len != old_var_len)
continue; // can't match
if (strncmp(name, old_var, new_var_len) == 0)
skip = environ_size;
}
if (skip == -1)
return 0; // not found: no failure.
// Shuffle the existing array down by one.
memmove(&environ[skip], &environ[skip + 1], ((environ_size - 1) - skip) * sizeof(environ[0]));
environ[environ_size - 1] = nullptr;
free_environment_variable_if_needed(name);
return 0;
}
int clearenv()
{
size_t environ_size = 0;
for (; environ[environ_size]; ++environ_size) {
environ[environ_size] = NULL;
}
*environ = NULL;
return 0;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/setenv.html
int setenv(char const* name, char const* value, int overwrite)
{
return serenity_setenv(name, strlen(name), value, strlen(value), overwrite);
}
int serenity_setenv(char const* name, ssize_t name_length, char const* value, ssize_t value_length, int overwrite)
{
if (!overwrite && getenv(name))
return 0;
auto const total_length = name_length + value_length + 2;
auto* var = (char*)malloc(total_length);
snprintf(var, total_length, "%s=%s", name, value);
s_malloced_environment_variables.set((FlatPtr)var);
return putenv(var);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/putenv.html
int putenv(char* new_var)
{
char* new_eq = strchr(new_var, '=');
if (!new_eq)
return unsetenv(new_var);
auto new_var_len = new_eq - new_var;
int environ_size = 0;
for (; environ[environ_size]; ++environ_size) {
char* old_var = environ[environ_size];
char* old_eq = strchr(old_var, '=');
VERIFY(old_eq);
auto old_var_len = old_eq - old_var;
if (new_var_len != old_var_len)
continue; // can't match
if (strncmp(new_var, old_var, new_var_len) == 0) {
free_environment_variable_if_needed(old_var);
environ[environ_size] = new_var;
return 0;
}
}
// At this point, we need to append the new var.
// 2 here: one for the new var, one for the sentinel value.
auto** new_environ = static_cast<char**>(kmalloc_array(environ_size + 2, sizeof(char*)));
if (new_environ == nullptr) {
errno = ENOMEM;
return -1;
}
for (int i = 0; environ[i]; ++i) {
new_environ[i] = environ[i];
}
new_environ[environ_size] = new_var;
new_environ[environ_size + 1] = nullptr;
// swap new and old
// note that the initial environ is not heap allocated!
extern bool __environ_is_malloced;
if (__environ_is_malloced)
free(environ);
__environ_is_malloced = true;
environ = new_environ;
return 0;
}
static char const* __progname = NULL;
char const* getprogname()
{
return __progname;
}
void setprogname(char const* progname)
{
for (int i = strlen(progname) - 1; i >= 0; i--) {
if (progname[i] == '/') {
__progname = progname + i + 1;
return;
}
}
__progname = progname;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/strtod.html
double strtod(char const* str, char** endptr)
{
return c_str_to_floating_point<double>(str, endptr);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/strtold.html
long double strtold(char const* str, char** endptr)
{
assert(sizeof(double) == sizeof(long double));
return strtod(str, endptr);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/strtof.html
float strtof(char const* str, char** endptr)
{
return c_str_to_floating_point<float>(str, endptr);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/atof.html
double atof(char const* str)
{
return strtod(str, nullptr);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/atoi.html
int atoi(char const* str)
{
long value = strtol(str, nullptr, 10);
if (value > INT_MAX) {
return INT_MAX;
}
return value;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/atol.html
long atol(char const* str)
{
return strtol(str, nullptr, 10);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/atoll.html
long long atoll(char const* str)
{
return strtoll(str, nullptr, 10);
}
static char ptsname_buf[32];
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/ptsname.html
char* ptsname(int fd)
{
if (ptsname_r(fd, ptsname_buf, sizeof(ptsname_buf)) < 0)
return nullptr;
return ptsname_buf;
}
int ptsname_r(int fd, char* buffer, size_t size)
{
struct stat stat;
if (fstat(fd, &stat) < 0)
return -1;
StringBuilder devpts_path_builder;
devpts_path_builder.append("/dev/pts/"sv);
int master_pty_index = 0;
// Note: When the user opens a PTY from /dev/ptmx with posix_openpt(), the open file descriptor
// points to /dev/ptmx, (major number is 5 and minor number is 2), but internally
// in the kernel, it points to a new MasterPTY device. When we do ioctl with TIOCGPTN option
// on the open file descriptor, it actually asks the MasterPTY what is the assigned index
// of it when the PTYMultiplexer created it.
if (ioctl(fd, TIOCGPTN, &master_pty_index) < 0)
return -1;
if (master_pty_index < 0) {
errno = EINVAL;
return -1;
}
devpts_path_builder.appendff("{:d}", master_pty_index);
if (devpts_path_builder.length() > size) {
errno = ERANGE;
return -1;
}
memset(buffer, 0, devpts_path_builder.length() + 1);
auto full_devpts_path_string = devpts_path_builder.build();
if (!full_devpts_path_string.copy_characters_to_buffer(buffer, size)) {
errno = ERANGE;
return -1;
}
return 0;
}
static unsigned long s_next_rand = 1;
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/rand.html
int rand()
{
s_next_rand = s_next_rand * 1103515245 + 12345;
return ((unsigned)(s_next_rand / ((RAND_MAX + 1) * 2)) % (RAND_MAX + 1));
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/srand.html
void srand(unsigned seed)
{
s_next_rand = seed;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/abs.html
int abs(int i)
{
return i < 0 ? -i : i;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/labs.html
long int labs(long int i)
{
return i < 0 ? -i : i;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/llabs.html
long long int llabs(long long int i)
{
return i < 0 ? -i : i;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/random.html
long int random()
{
return rand();
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/srandom.html
void srandom(unsigned seed)
{
srand(seed);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/system.html
int system(char const* command)
{
__pthread_maybe_cancel();
if (!command)
return 1;
pid_t child;
char const* argv[] = { "sh", "-c", command, nullptr };
if ((errno = posix_spawn(&child, "/bin/sh", nullptr, nullptr, const_cast<char**>(argv), environ)))
return -1;
int wstatus;
waitpid(child, &wstatus, 0);
return WEXITSTATUS(wstatus);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/mktemp.html
char* mktemp(char* pattern)
{
auto error = generate_unique_filename(pattern, 0, [&] {
struct stat st;
int rc = lstat(pattern, &st);
if (rc < 0 && errno == ENOENT)
return IterationDecision::Break;
return IterationDecision::Continue;
});
if (error) {
pattern[0] = '\0';
errno = error;
}
return pattern;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/mkstemp.html
int mkstemp(char* pattern)
{
return mkstemps(pattern, 0);
}
// https://man7.org/linux/man-pages/man3/mkstemps.3.html
int mkstemps(char* pattern, int suffix_length)
{
VERIFY(suffix_length >= 0);
int fd = -1;
auto error = generate_unique_filename(pattern, static_cast<size_t>(suffix_length), [&] {
fd = open(pattern, O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR); // I'm using the flags I saw glibc using.
if (fd >= 0)
return IterationDecision::Break;
return IterationDecision::Continue;
});
if (error) {
errno = error;
return -1;
}
return fd;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/mkdtemp.html
char* mkdtemp(char* pattern)
{
auto error = generate_unique_filename(pattern, 0, [&] {
if (mkdir(pattern, 0700) == 0)
return IterationDecision::Break;
return IterationDecision::Continue;
});
if (error) {
errno = error;
return nullptr;
}
return pattern;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/bsearch.html
void* bsearch(void const* key, void const* base, size_t nmemb, size_t size, int (*compar)(void const*, void const*))
{
char* start = static_cast<char*>(const_cast<void*>(base));
while (nmemb > 0) {
char* middle_memb = start + (nmemb / 2) * size;
int comparison = compar(key, middle_memb);
if (comparison == 0)
return middle_memb;
else if (comparison > 0) {
start = middle_memb + size;
--nmemb;
}
nmemb /= 2;
}
return nullptr;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/div.html
div_t div(int numerator, int denominator)
{
div_t result;
result.quot = numerator / denominator;
result.rem = numerator % denominator;
if (numerator >= 0 && result.rem < 0) {
result.quot++;
result.rem -= denominator;
}
return result;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/ldiv.html
ldiv_t ldiv(long numerator, long denominator)
{
ldiv_t result;
result.quot = numerator / denominator;
result.rem = numerator % denominator;
if (numerator >= 0 && result.rem < 0) {
result.quot++;
result.rem -= denominator;
}
return result;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/lldiv.html
lldiv_t lldiv(long long numerator, long long denominator)
{
lldiv_t result;
result.quot = numerator / denominator;
result.rem = numerator % denominator;
if (numerator >= 0 && result.rem < 0) {
result.quot++;
result.rem -= denominator;
}
return result;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/mblen.html
int mblen(char const* s, size_t n)
{
// POSIX: Equivalent to mbtowc(NULL, s, n), but we mustn't change the state of mbtowc.
static mbstate_t internal_state = {};
// Reset the internal state and ask whether we have shift states.
if (s == nullptr) {
internal_state = {};
return 0;
}
size_t ret = mbrtowc(nullptr, s, n, &internal_state);
// Incomplete characters get returned as illegal sequence.
if (ret == -2ul) {
errno = EILSEQ;
return -1;
}
return ret;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/mbstowcs.html
size_t mbstowcs(wchar_t* pwcs, char const* s, size_t n)
{
static mbstate_t state = {};
return mbsrtowcs(pwcs, &s, n, &state);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/mbtowc.html
int mbtowc(wchar_t* pwc, char const* s, size_t n)
{
static mbstate_t internal_state = {};
// Reset the internal state and ask whether we have shift states.
if (s == nullptr) {
internal_state = {};
return 0;
}
size_t ret = mbrtowc(pwc, s, n, &internal_state);
// Incomplete characters get returned as illegal sequence.
// Internal state is undefined, so don't bother with resetting.
if (ret == -2ul) {
errno = EILSEQ;
return -1;
}
return ret;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/wctomb.html
int wctomb(char* s, wchar_t wc)
{
static mbstate_t _internal_state = {};
// nullptr asks whether we have state-dependent encodings, but we don't have any.
if (s == nullptr)
return 0;
return static_cast<int>(wcrtomb(s, wc, &_internal_state));
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/wcstombs.html
size_t wcstombs(char* dest, wchar_t const* src, size_t max)
{
char* original_dest = dest;
while ((size_t)(dest - original_dest) < max) {
StringView v { (char const*)src, sizeof(wchar_t) };
// FIXME: dependent on locale, for now utf-8 is supported.
Utf8View utf8 { v };
if (*utf8.begin() == '\0') {
*dest = '\0';
return (size_t)(dest - original_dest); // Exclude null character in returned size
}
for (auto byte : utf8) {
if (byte != '\0')
*dest++ = byte;
}
++src;
}
return max;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
long strtol(char const* str, char** endptr, int base)
{
long long value = strtoll(str, endptr, base);
if (value < LONG_MIN) {
errno = ERANGE;
return LONG_MIN;
} else if (value > LONG_MAX) {
errno = ERANGE;
return LONG_MAX;
}
return value;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/strtoul.html
unsigned long strtoul(char const* str, char** endptr, int base)
{
unsigned long long value = strtoull(str, endptr, base);
if (value > ULONG_MAX) {
errno = ERANGE;
return ULONG_MAX;
}
return value;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/strtoll.html
long long strtoll(char const* str, char** endptr, int base)
{
// Parse spaces and sign
char* parse_ptr = const_cast<char*>(str);
strtons(parse_ptr, &parse_ptr);
const Sign sign = strtosign(parse_ptr, &parse_ptr);
// Parse base
if (base == 0) {
if (*parse_ptr == '0') {
if (tolower(*(parse_ptr + 1)) == 'x') {
base = 16;
parse_ptr += 2;
} else {
base = 8;
}
} else {
base = 10;
}
}
// Parse actual digits.
LongLongParser digits { sign, base };
bool digits_usable = false;
bool should_continue = true;
bool overflow = false;
do {
bool is_a_digit;
if (overflow) {
is_a_digit = digits.parse_digit(*parse_ptr) >= 0;
} else {
DigitConsumeDecision decision = digits.consume(*parse_ptr);
switch (decision) {
case DigitConsumeDecision::Consumed:
is_a_digit = true;
// The very first actual digit must pass here:
digits_usable = true;
break;
case DigitConsumeDecision::PosOverflow:
case DigitConsumeDecision::NegOverflow:
is_a_digit = true;
overflow = true;
break;
case DigitConsumeDecision::Invalid:
is_a_digit = false;
break;
default:
VERIFY_NOT_REACHED();
}
}
should_continue = is_a_digit;
parse_ptr += should_continue;
} while (should_continue);
if (!digits_usable) {
// No actual number value available.
if (endptr)
*endptr = const_cast<char*>(str);
return 0;
}
if (endptr)
*endptr = parse_ptr;
if (overflow) {
errno = ERANGE;
if (sign != Sign::Negative) {
return LONG_LONG_MAX;
} else {
return LONG_LONG_MIN;
}
}
return digits.number();
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/strtoull.html
unsigned long long strtoull(char const* str, char** endptr, int base)
{
// Parse spaces and sign
char* parse_ptr = const_cast<char*>(str);
strtons(parse_ptr, &parse_ptr);
if (base == 16) {
// Dr. POSIX: "If the value of base is 16, the characters 0x or 0X may optionally precede
// the sequence of letters and digits, following the sign if present."
if (*parse_ptr == '0') {
if (tolower(*(parse_ptr + 1)) == 'x')
parse_ptr += 2;
}
}
// Parse base
if (base == 0) {
if (*parse_ptr == '0') {
if (tolower(*(parse_ptr + 1)) == 'x') {
base = 16;
parse_ptr += 2;
} else {
base = 8;
}
} else {
base = 10;
}
}
// Parse actual digits.
ULongLongParser digits { Sign::Positive, base };
bool digits_usable = false;
bool should_continue = true;
bool overflow = false;
do {
bool is_a_digit;
if (overflow) {
is_a_digit = digits.parse_digit(*parse_ptr) >= 0;
} else {
DigitConsumeDecision decision = digits.consume(*parse_ptr);
switch (decision) {
case DigitConsumeDecision::Consumed:
is_a_digit = true;
// The very first actual digit must pass here:
digits_usable = true;
break;
case DigitConsumeDecision::PosOverflow:
case DigitConsumeDecision::NegOverflow:
is_a_digit = true;
overflow = true;
break;
case DigitConsumeDecision::Invalid:
is_a_digit = false;
break;
default:
VERIFY_NOT_REACHED();
}
}
should_continue = is_a_digit;
parse_ptr += should_continue;
} while (should_continue);
if (!digits_usable) {
// No actual number value available.
if (endptr)
*endptr = const_cast<char*>(str);
return 0;
}
if (endptr)
*endptr = parse_ptr;
if (overflow) {
errno = ERANGE;
return LONG_LONG_MAX;
}
return digits.number();
}
uint32_t arc4random(void)
{
uint32_t buf;
arc4random_buf(&buf, sizeof(buf));
return buf;
}
static pthread_mutex_t s_randomness_mutex = PTHREAD_MUTEX_INITIALIZER;
static u8* s_randomness_buffer;
static size_t s_randomness_index;
void arc4random_buf(void* buffer, size_t buffer_size)
{
pthread_mutex_lock(&s_randomness_mutex);
size_t bytes_needed = buffer_size;
auto* ptr = static_cast<u8*>(buffer);
while (bytes_needed > 0) {
if (!s_randomness_buffer || s_randomness_index >= PAGE_SIZE) {
if (!s_randomness_buffer) {
s_randomness_buffer = static_cast<u8*>(mmap(nullptr, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_RANDOMIZED, 0, 0));
VERIFY(s_randomness_buffer != MAP_FAILED);
__pthread_fork_atfork_register_child(
[] {
munmap(s_randomness_buffer, PAGE_SIZE);
s_randomness_buffer = nullptr;
s_randomness_index = 0;
});
}
syscall(SC_getrandom, s_randomness_buffer, PAGE_SIZE);
s_randomness_index = 0;
}
size_t available_bytes = PAGE_SIZE - s_randomness_index;
size_t bytes_to_copy = min(bytes_needed, available_bytes);
memcpy(ptr, s_randomness_buffer + s_randomness_index, bytes_to_copy);
s_randomness_index += bytes_to_copy;
bytes_needed -= bytes_to_copy;
ptr += bytes_to_copy;
}
pthread_mutex_unlock(&s_randomness_mutex);
}
uint32_t arc4random_uniform(uint32_t max_bounds)
{
return AK::get_random_uniform(max_bounds);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/realpath.html
char* realpath(char const* pathname, char* buffer)
{
if (!pathname) {
errno = EFAULT;
return nullptr;
}
size_t size = PATH_MAX;
bool self_allocated = false;
if (buffer == nullptr) {
// Since we self-allocate, try to sneakily use a smaller buffer instead, in an attempt to use less memory.
size = 64;
buffer = (char*)malloc(size);
self_allocated = true;
}
Syscall::SC_realpath_params params { { pathname, strlen(pathname) }, { buffer, size } };
int rc = syscall(SC_realpath, &params);
if (rc < 0) {
if (self_allocated)
free(buffer);
errno = -rc;
return nullptr;
}
if (self_allocated && static_cast<size_t>(rc) > size) {
// There was silent truncation, *and* we can simply retry without the caller noticing.
free(buffer);
size = static_cast<size_t>(rc);
buffer = (char*)malloc(size);
params.buffer = { buffer, size };
rc = syscall(SC_realpath, &params);
if (rc < 0) {
// Can only happen if we lose a race. Let's pretend we lost the race in the first place.
free(buffer);
errno = -rc;
return nullptr;
}
size_t new_size = static_cast<size_t>(rc);
if (new_size < size) {
// If we're here, the symlink has become longer while we were looking at it.
// There's not much we can do, unless we want to loop endlessly
// in this case. Let's leave it up to the caller whether to loop.
free(buffer);
errno = EAGAIN;
return nullptr;
}
}
errno = 0;
return buffer;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/posix_openpt.html
int posix_openpt(int flags)
{
if (flags & ~(O_RDWR | O_NOCTTY | O_CLOEXEC)) {
errno = EINVAL;
return -1;
}
return open("/dev/ptmx", flags);
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/grantpt.html
int grantpt([[maybe_unused]] int fd)
{
return 0;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/unlockpt.html
int unlockpt([[maybe_unused]] int fd)
{
return 0;
}
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/_Exit.html
void _Exit(int status)
{
_exit(status);
}