ladybird/Kernel/VM/MemoryManager.h
2021-01-22 22:17:39 +01:00

293 lines
10 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/HashTable.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/String.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Forward.h>
#include <Kernel/SpinLock.h>
#include <Kernel/VM/AllocationStrategy.h>
#include <Kernel/VM/PhysicalPage.h>
#include <Kernel/VM/Region.h>
#include <Kernel/VM/VMObject.h>
namespace Kernel {
#define PAGE_ROUND_UP(x) ((((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1)))
#define PAGE_ROUND_DOWN(x) (((FlatPtr)(x)) & ~(PAGE_SIZE - 1))
template<typename T>
inline T* low_physical_to_virtual(T* physical)
{
return (T*)(((u8*)physical) + 0xc0000000);
}
inline u32 low_physical_to_virtual(u32 physical)
{
return physical + 0xc0000000;
}
template<typename T>
inline T* virtual_to_low_physical(T* physical)
{
return (T*)(((u8*)physical) - 0xc0000000);
}
inline u32 virtual_to_low_physical(u32 physical)
{
return physical - 0xc0000000;
}
class KBuffer;
class SynthFSInode;
enum class UsedMemoryRangeType {
LowMemory = 0,
Kernel,
BootModule,
};
constexpr static const char* UserMemoryRangeTypeNames[] {
"Low memory",
"Kernel",
"Boot module",
};
struct UsedMemoryRange {
UsedMemoryRangeType type;
PhysicalAddress start;
PhysicalAddress end;
};
const LogStream& operator<<(const LogStream& stream, const UsedMemoryRange& value);
#define MM Kernel::MemoryManager::the()
struct MemoryManagerData {
SpinLock<u8> m_quickmap_in_use;
u32 m_quickmap_prev_flags;
PhysicalAddress m_last_quickmap_pd;
PhysicalAddress m_last_quickmap_pt;
};
extern RecursiveSpinLock s_mm_lock;
class MemoryManager {
AK_MAKE_ETERNAL
friend class PageDirectory;
friend class PhysicalPage;
friend class PhysicalRegion;
friend class AnonymousVMObject;
friend class Region;
friend class VMObject;
friend OwnPtr<KBuffer> procfs$memstat(InodeIdentifier);
public:
static MemoryManager& the();
static bool is_initialized();
static void early_initialize();
static void initialize(u32 cpu);
static inline MemoryManagerData& get_data()
{
return Processor::current().get_mm_data();
}
PageFaultResponse handle_page_fault(const PageFault&);
void enter_process_paging_scope(Process&);
bool validate_user_stack(const Process&, VirtualAddress) const;
enum class ShouldZeroFill {
No,
Yes
};
bool commit_user_physical_pages(size_t);
void uncommit_user_physical_pages(size_t);
NonnullRefPtr<PhysicalPage> allocate_committed_user_physical_page(ShouldZeroFill = ShouldZeroFill::Yes);
RefPtr<PhysicalPage> allocate_user_physical_page(ShouldZeroFill = ShouldZeroFill::Yes, bool* did_purge = nullptr);
RefPtr<PhysicalPage> allocate_supervisor_physical_page();
NonnullRefPtrVector<PhysicalPage> allocate_contiguous_supervisor_physical_pages(size_t size);
void deallocate_user_physical_page(const PhysicalPage&);
void deallocate_supervisor_physical_page(const PhysicalPage&);
OwnPtr<Region> allocate_contiguous_kernel_region(size_t, const StringView& name, u8 access, bool user_accessible = false, bool cacheable = true);
OwnPtr<Region> allocate_kernel_region(size_t, const StringView& name, u8 access, bool user_accessible = false, AllocationStrategy strategy = AllocationStrategy::Reserve, bool cacheable = true);
OwnPtr<Region> allocate_kernel_region(PhysicalAddress, size_t, const StringView& name, u8 access, bool user_accessible = false, bool cacheable = true);
OwnPtr<Region> allocate_kernel_region_identity(PhysicalAddress, size_t, const StringView& name, u8 access, bool user_accessible = false, bool cacheable = true);
OwnPtr<Region> allocate_kernel_region_with_vmobject(VMObject&, size_t, const StringView& name, u8 access, bool user_accessible = false, bool cacheable = true);
OwnPtr<Region> allocate_kernel_region_with_vmobject(const Range&, VMObject&, const StringView& name, u8 access, bool user_accessible = false, bool cacheable = true);
OwnPtr<Region> allocate_user_accessible_kernel_region(size_t, const StringView& name, u8 access, bool cacheable = true);
unsigned user_physical_pages() const { return m_user_physical_pages; }
unsigned user_physical_pages_used() const { return m_user_physical_pages_used; }
unsigned user_physical_pages_committed() const { return m_user_physical_pages_committed; }
unsigned user_physical_pages_uncommitted() const { return m_user_physical_pages_uncommitted; }
unsigned super_physical_pages() const { return m_super_physical_pages; }
unsigned super_physical_pages_used() const { return m_super_physical_pages_used; }
template<typename Callback>
static void for_each_vmobject(Callback callback)
{
for (auto& vmobject : MM.m_vmobjects) {
if (callback(vmobject) == IterationDecision::Break)
break;
}
}
template<typename T, typename Callback>
static void for_each_vmobject_of_type(Callback callback)
{
for (auto& vmobject : MM.m_vmobjects) {
if (!is<T>(vmobject))
continue;
if (callback(static_cast<T&>(vmobject)) == IterationDecision::Break)
break;
}
}
static Region* find_region_from_vaddr(Process&, VirtualAddress);
static const Region* find_region_from_vaddr(const Process&, VirtualAddress);
void dump_kernel_regions();
PhysicalPage& shared_zero_page() { return *m_shared_zero_page; }
PhysicalPage& lazy_committed_page() { return *m_lazy_committed_page; }
PageDirectory& kernel_page_directory() { return *m_kernel_page_directory; }
const Vector<UsedMemoryRange>& used_memory_ranges() { return m_used_memory_ranges; }
private:
MemoryManager();
~MemoryManager();
enum class AccessSpace { Kernel,
User };
enum class AccessType { Read,
Write };
template<AccessSpace, AccessType>
bool validate_range(const Process&, VirtualAddress, size_t) const;
void register_vmobject(VMObject&);
void unregister_vmobject(VMObject&);
void register_region(Region&);
void unregister_region(Region&);
void detect_cpu_features();
void protect_kernel_image();
void parse_memory_map();
static void flush_tlb_local(VirtualAddress, size_t page_count = 1);
static void flush_tlb(const PageDirectory*, VirtualAddress, size_t page_count = 1);
static Region* user_region_from_vaddr(Process&, VirtualAddress);
static Region* kernel_region_from_vaddr(VirtualAddress);
static Region* find_region_from_vaddr(VirtualAddress);
RefPtr<PhysicalPage> find_free_user_physical_page(bool);
u8* quickmap_page(PhysicalPage&);
void unquickmap_page();
PageDirectoryEntry* quickmap_pd(PageDirectory&, size_t pdpt_index);
PageTableEntry* quickmap_pt(PhysicalAddress);
PageTableEntry* pte(PageDirectory&, VirtualAddress);
PageTableEntry* ensure_pte(PageDirectory&, VirtualAddress);
void release_pte(PageDirectory&, VirtualAddress, bool);
RefPtr<PageDirectory> m_kernel_page_directory;
RefPtr<PhysicalPage> m_low_page_table;
RefPtr<PhysicalPage> m_shared_zero_page;
RefPtr<PhysicalPage> m_lazy_committed_page;
Atomic<unsigned, AK::MemoryOrder::memory_order_relaxed> m_user_physical_pages { 0 };
Atomic<unsigned, AK::MemoryOrder::memory_order_relaxed> m_user_physical_pages_used { 0 };
Atomic<unsigned, AK::MemoryOrder::memory_order_relaxed> m_user_physical_pages_committed { 0 };
Atomic<unsigned, AK::MemoryOrder::memory_order_relaxed> m_user_physical_pages_uncommitted { 0 };
Atomic<unsigned, AK::MemoryOrder::memory_order_relaxed> m_super_physical_pages { 0 };
Atomic<unsigned, AK::MemoryOrder::memory_order_relaxed> m_super_physical_pages_used { 0 };
NonnullRefPtrVector<PhysicalRegion> m_user_physical_regions;
NonnullRefPtrVector<PhysicalRegion> m_super_physical_regions;
InlineLinkedList<Region> m_user_regions;
InlineLinkedList<Region> m_kernel_regions;
Vector<UsedMemoryRange> m_used_memory_ranges;
InlineLinkedList<VMObject> m_vmobjects;
RefPtr<PhysicalPage> m_low_pseudo_identity_mapping_pages[4];
};
template<typename Callback>
void VMObject::for_each_region(Callback callback)
{
ScopedSpinLock lock(s_mm_lock);
// FIXME: Figure out a better data structure so we don't have to walk every single region every time an inode changes.
// Perhaps VMObject could have a Vector<Region*> with all of his mappers?
for (auto& region : MM.m_user_regions) {
if (&region.vmobject() == this)
callback(region);
}
for (auto& region : MM.m_kernel_regions) {
if (&region.vmobject() == this)
callback(region);
}
}
inline bool is_user_address(VirtualAddress vaddr)
{
return vaddr.get() < 0xc0000000;
}
inline bool is_user_range(VirtualAddress vaddr, size_t size)
{
if (vaddr.offset(size) < vaddr)
return false;
return is_user_address(vaddr) && is_user_address(vaddr.offset(size));
}
inline bool PhysicalPage::is_shared_zero_page() const
{
return this == &MM.shared_zero_page();
}
inline bool PhysicalPage::is_lazy_committed_page() const
{
return this == &MM.lazy_committed_page();
}
}