ladybird/Libraries/LibM/math.cpp
2019-11-11 22:04:16 +01:00

311 lines
7.0 KiB
C++

#include <LibC/assert.h>
#include <LibM/math.h>
#include <stdint.h>
#include <stdlib.h>
template<size_t>
constexpr double e_to_power();
template<>
constexpr double e_to_power<0>() { return 1; }
template<size_t exponent>
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
template<size_t>
constexpr size_t factorial();
template<>
constexpr size_t factorial<0>() { return 1; }
template<size_t value>
constexpr size_t factorial() { return value * factorial<value - 1>(); }
template<size_t>
constexpr size_t product_even();
template<>
constexpr size_t product_even<2>() { return 2; }
template<size_t value>
constexpr size_t product_even() { return value * product_even<value - 2>(); }
template<size_t>
constexpr size_t product_odd();
template<>
constexpr size_t product_odd<1>() { return 1; }
template<size_t value>
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
extern "C" {
double trunc(double x)
{
return (int64_t)x;
}
double cos(double angle)
{
return sin(angle + M_PI_2);
}
// This can also be done with a taylor expansion, but for
// now this works pretty well (and doesn't mess anything up
// in quake in particular, which is very Floating-Point precision
// heavy)
double sin(double angle)
{
double ret = 0.0;
__asm__(
"fsin"
: "=t"(ret)
: "0"(angle));
return ret;
}
double pow(double x, double y)
{
(void)x;
(void)y;
ASSERT_NOT_REACHED();
return 0;
}
double ldexp(double, int exp)
{
(void)exp;
ASSERT_NOT_REACHED();
return 0;
}
double tanh(double x)
{
if (x > 0) {
double exponentiated = exp(2 * x);
return (exponentiated - 1) / (exponentiated + 1);
}
double plusX = exp(x);
double minusX = 1 / plusX;
return (plusX - minusX) / (plusX + minusX);
}
double ampsin(double angle)
{
double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
double looped_angle_squared = looped_angle * looped_angle;
double quadratic_term;
if (looped_angle > 0) {
quadratic_term = -looped_angle_squared;
} else {
quadratic_term = looped_angle_squared;
}
double linear_term = M_PI * looped_angle;
return quadratic_term + linear_term;
}
double tan(double angle)
{
return ampsin(angle) / ampsin(M_PI_2 + angle);
}
double sqrt(double x)
{
double res;
__asm__("fsqrt"
: "=t"(res)
: "0"(x));
return res;
}
double sinh(double x)
{
double exponentiated = exp(x);
if (x > 0)
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
return (exponentiated - 1 / exponentiated) / 2;
}
double log10(double x)
{
return log(x) / M_LN10;
}
double log(double x)
{
if (x < 0)
return __builtin_nan("");
if (x == 0)
return -__builtin_huge_val();
double y = 1 + 2 * (x - 1) / (x + 1);
double exponentiated = exp(y);
y = y + 2 * (x - exponentiated) / (x + exponentiated);
exponentiated = exp(y);
y = y + 2 * (x - exponentiated) / (x + exponentiated);
exponentiated = exp(y);
return y + 2 * (x - exponentiated) / (x + exponentiated);
}
double fmod(double index, double period)
{
return index - trunc(index / period) * period;
}
double exp(double exponent)
{
double result = 1;
if (exponent >= 1) {
size_t integer_part = (size_t)exponent;
if (integer_part & 1)
result *= e_to_power<1>();
if (integer_part & 2)
result *= e_to_power<2>();
if (integer_part > 3) {
if (integer_part & 4)
result *= e_to_power<4>();
if (integer_part & 8)
result *= e_to_power<8>();
if (integer_part & 16)
result *= e_to_power<16>();
if (integer_part & 32)
result *= e_to_power<32>();
if (integer_part >= 64)
return __builtin_huge_val();
}
exponent -= integer_part;
} else if (exponent < 0)
return 1 / exp(-exponent);
double taylor_series_result = 1 + exponent;
double taylor_series_numerator = exponent * exponent;
taylor_series_result += taylor_series_numerator / factorial<2>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<3>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<4>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<5>();
return result * taylor_series_result;
}
double cosh(double x)
{
double exponentiated = exp(-x);
if (x < 0)
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
return (1 / exponentiated + exponentiated) / 2;
}
double atan2(double y, double x)
{
if (x > 0)
return atan(y / x);
if (x == 0) {
if (y > 0)
return M_PI_2;
if (y < 0)
return -M_PI_2;
return 0;
}
if (y >= 0)
return atan(y / x) + M_PI;
return atan(y / x) - M_PI;
}
double atan(double x)
{
if (x < 0)
return -atan(-x);
if (x > 1)
return M_PI_2 - atan(1 / x);
double squared = x * x;
return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
}
double asin(double x)
{
if (x > 1 || x < -1)
return __builtin_nan("");
if (x > 0.5 || x < -0.5)
return 2 * atan(x / (1 + sqrt(1 - x * x)));
double squared = x * x;
double value = x;
double i = x * squared;
value += i * product_odd<1>() / product_even<2>() / 3;
i *= squared;
value += i * product_odd<3>() / product_even<4>() / 5;
i *= squared;
value += i * product_odd<5>() / product_even<6>() / 7;
i *= squared;
value += i * product_odd<7>() / product_even<8>() / 9;
i *= squared;
value += i * product_odd<9>() / product_even<10>() / 11;
i *= squared;
value += i * product_odd<11>() / product_even<12>() / 13;
return value;
}
double acos(double x)
{
return M_PI_2 - asin(x);
}
double fabs(double value)
{
return value < 0 ? -value : value;
}
double log2(double x)
{
return log(x) / M_LN2;
}
float log2f(float x)
{
return log2(x);
}
long double log2l(long double x)
{
return log2(x);
}
double frexp(double, int*)
{
ASSERT_NOT_REACHED();
return 0;
}
float frexpf(float, int*)
{
ASSERT_NOT_REACHED();
return 0;
}
long double frexpl(long double, int*)
{
ASSERT_NOT_REACHED();
return 0;
}
float roundf(float value)
{
// FIXME: Please fix me. I am naive.
if (value >= 0.0f)
return (float)(int)(value + 0.5f);
return (float)(int)(value - 0.5f);
}
float ceilf(float value)
{
// FIXME: Please fix me. I am naive.
int as_int = (int)value;
if (value == (float)as_int) {
return (float)as_int;
}
return as_int + 1;
}
double modf(double x, double* intpart)
{
*intpart = (double)((int)(x));
return x - (int)x;
}
}