ladybird/Userland/Libraries/LibGfx/Bitmap.cpp
2024-02-27 07:02:02 +01:00

730 lines
26 KiB
C++

/*
* Copyright (c) 2018-2023, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Timothy Slater <tslater2006@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Bitmap.h>
#include <AK/ByteString.h>
#include <AK/Checked.h>
#include <AK/LexicalPath.h>
#include <AK/Memory.h>
#include <AK/MemoryStream.h>
#include <AK/Optional.h>
#include <AK/Queue.h>
#include <AK/ScopeGuard.h>
#include <AK/Try.h>
#include <LibCore/File.h>
#include <LibCore/MappedFile.h>
#include <LibCore/MimeData.h>
#include <LibCore/System.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/ImageFormats/ImageDecoder.h>
#include <LibGfx/ShareableBitmap.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
namespace Gfx {
struct BackingStore {
void* data { nullptr };
size_t pitch { 0 };
size_t size_in_bytes { 0 };
};
size_t Bitmap::minimum_pitch(size_t physical_width, BitmapFormat format)
{
size_t element_size;
switch (determine_storage_format(format)) {
case StorageFormat::BGRx8888:
case StorageFormat::BGRA8888:
case StorageFormat::RGBA8888:
element_size = 4;
break;
default:
VERIFY_NOT_REACHED();
}
return physical_width * element_size;
}
static bool size_would_overflow(BitmapFormat format, IntSize size, int scale_factor)
{
if (size.width() < 0 || size.height() < 0)
return true;
// This check is a bit arbitrary, but should protect us from most shenanigans:
if (size.width() >= INT16_MAX || size.height() >= INT16_MAX || scale_factor < 1 || scale_factor > 4)
return true;
// In contrast, this check is absolutely necessary:
size_t pitch = Bitmap::minimum_pitch(size.width() * scale_factor, format);
return Checked<size_t>::multiplication_would_overflow(pitch, size.height() * scale_factor);
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create(BitmapFormat format, IntSize size, int scale_factor)
{
auto backing_store = TRY(Bitmap::allocate_backing_store(format, size, scale_factor));
return AK::adopt_nonnull_ref_or_enomem(new (nothrow) Bitmap(format, size, scale_factor, backing_store));
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_shareable(BitmapFormat format, IntSize size, int scale_factor)
{
if (size_would_overflow(format, size, scale_factor))
return Error::from_string_literal("Gfx::Bitmap::create_shareable size overflow");
auto const pitch = minimum_pitch(size.width() * scale_factor, format);
auto const data_size = size_in_bytes(pitch, size.height() * scale_factor);
auto buffer = TRY(Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(data_size, PAGE_SIZE)));
auto bitmap = TRY(Bitmap::create_with_anonymous_buffer(format, buffer, size, scale_factor));
return bitmap;
}
Bitmap::Bitmap(BitmapFormat format, IntSize size, int scale_factor, BackingStore const& backing_store)
: m_size(size)
, m_scale(scale_factor)
, m_data(backing_store.data)
, m_pitch(backing_store.pitch)
, m_format(format)
{
VERIFY(!m_size.is_empty());
VERIFY(!size_would_overflow(format, size, scale_factor));
VERIFY(m_data);
VERIFY(backing_store.size_in_bytes == size_in_bytes());
m_needs_munmap = true;
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_wrapper(BitmapFormat format, IntSize size, int scale_factor, size_t pitch, void* data)
{
if (size_would_overflow(format, size, scale_factor))
return Error::from_string_literal("Gfx::Bitmap::create_wrapper size overflow");
return adopt_ref(*new Bitmap(format, size, scale_factor, pitch, data));
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::load_from_file(StringView path, int scale_factor, Optional<IntSize> ideal_size)
{
if (scale_factor > 1 && path.starts_with("/res/"sv)) {
auto load_scaled_bitmap = [](StringView path, int scale_factor, Optional<IntSize> ideal_size) -> ErrorOr<NonnullRefPtr<Bitmap>> {
LexicalPath lexical_path { path };
StringBuilder highdpi_icon_path;
TRY(highdpi_icon_path.try_appendff("{}/{}-{}x.{}", lexical_path.dirname(), lexical_path.title(), scale_factor, lexical_path.extension()));
auto highdpi_icon_string = highdpi_icon_path.string_view();
auto file = TRY(Core::File::open(highdpi_icon_string, Core::File::OpenMode::Read));
auto bitmap = TRY(load_from_file(move(file), highdpi_icon_string, ideal_size));
if (bitmap->width() % scale_factor != 0 || bitmap->height() % scale_factor != 0)
return Error::from_string_literal("Bitmap::load_from_file: HighDPI image size should be divisible by scale factor");
bitmap->m_size.set_width(bitmap->width() / scale_factor);
bitmap->m_size.set_height(bitmap->height() / scale_factor);
bitmap->m_scale = scale_factor;
return bitmap;
};
auto scaled_bitmap_or_error = load_scaled_bitmap(path, scale_factor, ideal_size);
if (!scaled_bitmap_or_error.is_error())
return scaled_bitmap_or_error.release_value();
auto error = scaled_bitmap_or_error.release_error();
if (!(error.is_syscall() && error.code() == ENOENT)) {
dbgln("Couldn't load scaled bitmap: {}", error);
dbgln("Trying base scale instead.");
}
}
auto file = TRY(Core::File::open(path, Core::File::OpenMode::Read));
return load_from_file(move(file), path, ideal_size);
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::load_from_file(NonnullOwnPtr<Core::File> file, StringView path, Optional<IntSize> ideal_size)
{
auto mapped_file = TRY(Core::MappedFile::map_from_file(move(file), path));
auto mime_type = Core::guess_mime_type_based_on_filename(path);
return load_from_bytes(mapped_file->bytes(), ideal_size, mime_type);
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::load_from_bytes(ReadonlyBytes bytes, Optional<IntSize> ideal_size, Optional<ByteString> mine_type)
{
if (auto decoder = ImageDecoder::try_create_for_raw_bytes(bytes, mine_type)) {
auto frame = TRY(decoder->frame(0, ideal_size));
if (auto& bitmap = frame.image)
return bitmap.release_nonnull();
}
return Error::from_string_literal("Gfx::Bitmap unable to load from file");
}
Bitmap::Bitmap(BitmapFormat format, IntSize size, int scale_factor, size_t pitch, void* data)
: m_size(size)
, m_scale(scale_factor)
, m_data(data)
, m_pitch(pitch)
, m_format(format)
{
VERIFY(pitch >= minimum_pitch(size.width() * scale_factor, format));
VERIFY(!size_would_overflow(format, size, scale_factor));
// FIXME: assert that `data` is actually long enough!
}
static bool check_size(IntSize size, int scale_factor, BitmapFormat format, unsigned actual_size)
{
// FIXME: Code duplication of size_in_bytes() and m_pitch
unsigned expected_size_min = Bitmap::minimum_pitch(size.width() * scale_factor, format) * size.height() * scale_factor;
unsigned expected_size_max = round_up_to_power_of_two(expected_size_min, PAGE_SIZE);
if (expected_size_min > actual_size || actual_size > expected_size_max) {
// Getting here is most likely an error.
dbgln("Constructing a shared bitmap for format {} and size {} @ {}x, which demands {} bytes, which rounds up to at most {}.",
static_cast<int>(format),
size,
scale_factor,
expected_size_min,
expected_size_max);
dbgln("However, we were given {} bytes, which is outside this range?! Refusing cowardly.", actual_size);
return false;
}
return true;
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_with_anonymous_buffer(BitmapFormat format, Core::AnonymousBuffer buffer, IntSize size, int scale_factor)
{
if (size_would_overflow(format, size, scale_factor))
return Error::from_string_literal("Gfx::Bitmap::create_with_anonymous_buffer size overflow");
return adopt_nonnull_ref_or_enomem(new (nothrow) Bitmap(format, move(buffer), size, scale_factor));
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_from_serialized_byte_buffer(ByteBuffer&& buffer)
{
return create_from_serialized_bytes(buffer.bytes());
}
/// Read a bitmap as described by:
/// - actual size
/// - width
/// - height
/// - scale_factor
/// - format
/// - image data (= actual size * u8)
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_from_serialized_bytes(ReadonlyBytes bytes)
{
FixedMemoryStream stream { bytes };
auto actual_size = TRY(stream.read_value<size_t>());
auto width = TRY(stream.read_value<unsigned>());
auto height = TRY(stream.read_value<unsigned>());
auto scale_factor = TRY(stream.read_value<unsigned>());
auto format = TRY(stream.read_value<BitmapFormat>());
if (format > BitmapFormat::LastValid || format < BitmapFormat::FirstValid)
return Error::from_string_literal("Gfx::Bitmap::create_from_serialized_byte_buffer: decode failed");
if (!check_size({ width, height }, scale_factor, format, actual_size))
return Error::from_string_literal("Gfx::Bitmap::create_from_serialized_byte_buffer: decode failed");
if (TRY(stream.size()) - TRY(stream.tell()) < actual_size)
return Error::from_string_literal("Gfx::Bitmap::create_from_serialized_byte_buffer: decode failed");
auto data = bytes.slice(TRY(stream.tell()), actual_size);
auto bitmap = TRY(Bitmap::create(format, { width, height }, scale_factor));
data.copy_to({ bitmap->scanline(0), bitmap->size_in_bytes() });
return bitmap;
}
ErrorOr<ByteBuffer> Bitmap::serialize_to_byte_buffer() const
{
auto buffer = TRY(ByteBuffer::create_uninitialized(sizeof(size_t) + 3 * sizeof(unsigned) + sizeof(BitmapFormat) + size_in_bytes()));
FixedMemoryStream stream { buffer.span() };
TRY(stream.write_value(size_in_bytes()));
TRY(stream.write_value<unsigned>(size().width()));
TRY(stream.write_value<unsigned>(size().height()));
TRY(stream.write_value<unsigned>(scale()));
TRY(stream.write_value(m_format));
auto size = size_in_bytes();
TRY(stream.write_until_depleted({ scanline(0), size }));
VERIFY(TRY(stream.tell()) == TRY(stream.size()));
return buffer;
}
Bitmap::Bitmap(BitmapFormat format, Core::AnonymousBuffer buffer, IntSize size, int scale_factor)
: m_size(size)
, m_scale(scale_factor)
, m_data(buffer.data<void>())
, m_pitch(minimum_pitch(size.width() * scale_factor, format))
, m_format(format)
, m_buffer(move(buffer))
{
VERIFY(!size_would_overflow(format, size, scale_factor));
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::clone() const
{
auto new_bitmap = TRY(Bitmap::create(format(), size(), scale()));
VERIFY(size_in_bytes() == new_bitmap->size_in_bytes());
memcpy(new_bitmap->scanline(0), scanline(0), size_in_bytes());
return new_bitmap;
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::rotated(Gfx::RotationDirection rotation_direction) const
{
if (rotation_direction == Gfx::RotationDirection::Flip) {
auto new_bitmap = TRY(Gfx::Bitmap::create(format(), { width(), height() }, scale()));
auto w = this->physical_width();
auto h = this->physical_height();
for (int i = 0; i < w; i++) {
for (int j = 0; j < h; j++)
new_bitmap->set_pixel(w - i - 1, h - j - 1, this->get_pixel(i, j));
}
return new_bitmap;
}
auto new_bitmap = TRY(Gfx::Bitmap::create(this->format(), { height(), width() }, scale()));
auto w = this->physical_width();
auto h = this->physical_height();
for (int i = 0; i < w; i++) {
for (int j = 0; j < h; j++) {
Color color;
if (rotation_direction == Gfx::RotationDirection::CounterClockwise)
color = this->get_pixel(w - i - 1, j);
else
color = this->get_pixel(i, h - j - 1);
new_bitmap->set_pixel(j, i, color);
}
}
return new_bitmap;
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::flipped(Gfx::Orientation orientation) const
{
auto new_bitmap = TRY(Gfx::Bitmap::create(this->format(), { width(), height() }, scale()));
auto w = this->physical_width();
auto h = this->physical_height();
for (int i = 0; i < w; i++) {
for (int j = 0; j < h; j++) {
Color color = this->get_pixel(i, j);
if (orientation == Orientation::Vertical)
new_bitmap->set_pixel(i, h - j - 1, color);
else
new_bitmap->set_pixel(w - i - 1, j, color);
}
}
return new_bitmap;
}
void Bitmap::apply_mask(Gfx::Bitmap const& mask, MaskKind mask_kind)
{
VERIFY(size() == mask.size());
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
auto color = get_pixel(x, y);
auto mask_color = mask.get_pixel(x, y);
if (mask_kind == MaskKind::Luminance) {
color = color.with_alpha(color.alpha() * mask_color.alpha() * mask_color.luminosity() / (255 * 255));
} else {
VERIFY(mask_kind == MaskKind::Alpha);
color = color.with_alpha(color.alpha() * mask_color.alpha() / 255);
}
set_pixel(x, y, color);
}
}
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::scaled(int sx, int sy) const
{
VERIFY(sx >= 0 && sy >= 0);
if (sx == 1 && sy == 1)
return clone();
auto new_bitmap = TRY(Gfx::Bitmap::create(format(), { width() * sx, height() * sy }, scale()));
auto old_width = physical_width();
auto old_height = physical_height();
for (int y = 0; y < old_height; y++) {
for (int x = 0; x < old_width; x++) {
auto color = get_pixel(x, y);
auto base_x = x * sx;
auto base_y = y * sy;
for (int new_y = base_y; new_y < base_y + sy; new_y++) {
for (int new_x = base_x; new_x < base_x + sx; new_x++) {
new_bitmap->set_pixel(new_x, new_y, color);
}
}
}
}
return new_bitmap;
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::scaled(float sx, float sy) const
{
VERIFY(sx >= 0.0f && sy >= 0.0f);
if (floorf(sx) == sx && floorf(sy) == sy)
return scaled(static_cast<int>(sx), static_cast<int>(sy));
int scaled_width = (int)ceilf(sx * (float)width());
int scaled_height = (int)ceilf(sy * (float)height());
return scaled_to_size({ scaled_width, scaled_height });
}
// http://fourier.eng.hmc.edu/e161/lectures/resize/node3.html
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::scaled_to_size(Gfx::IntSize size) const
{
auto new_bitmap = TRY(Gfx::Bitmap::create(format(), size, scale()));
auto old_width = physical_width();
auto old_height = physical_height();
auto new_width = new_bitmap->physical_width();
auto new_height = new_bitmap->physical_height();
if (old_width == 1 && old_height == 1) {
new_bitmap->fill(get_pixel(0, 0));
return new_bitmap;
}
if (old_width > 1 && old_height > 1) {
// The interpolation goes out of bounds on the bottom- and right-most edges.
// We handle those in two specialized loops not only to make them faster, but
// also to avoid four branch checks for every pixel.
for (int y = 0; y < new_height - 1; y++) {
for (int x = 0; x < new_width - 1; x++) {
auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
int i = floorf(p);
int j = floorf(q);
float u = p - static_cast<float>(i);
float v = q - static_cast<float>(j);
auto a = get_pixel(i, j);
auto b = get_pixel(i + 1, j);
auto c = get_pixel(i, j + 1);
auto d = get_pixel(i + 1, j + 1);
auto e = a.mixed_with(b, u);
auto f = c.mixed_with(d, u);
auto color = e.mixed_with(f, v);
new_bitmap->set_pixel(x, y, color);
}
}
// Bottom strip (excluding last pixel)
auto old_bottom_y = old_height - 1;
auto new_bottom_y = new_height - 1;
for (int x = 0; x < new_width - 1; x++) {
auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
int i = floorf(p);
float u = p - static_cast<float>(i);
auto a = get_pixel(i, old_bottom_y);
auto b = get_pixel(i + 1, old_bottom_y);
auto color = a.mixed_with(b, u);
new_bitmap->set_pixel(x, new_bottom_y, color);
}
// Right strip (excluding last pixel)
auto old_right_x = old_width - 1;
auto new_right_x = new_width - 1;
for (int y = 0; y < new_height - 1; y++) {
auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
int j = floorf(q);
float v = q - static_cast<float>(j);
auto c = get_pixel(old_right_x, j);
auto d = get_pixel(old_right_x, j + 1);
auto color = c.mixed_with(d, v);
new_bitmap->set_pixel(new_right_x, y, color);
}
// Bottom-right pixel
new_bitmap->set_pixel(new_width - 1, new_height - 1, get_pixel(physical_width() - 1, physical_height() - 1));
return new_bitmap;
} else if (old_height == 1) {
// Copy horizontal strip multiple times (excluding last pixel to out of bounds).
auto old_bottom_y = old_height - 1;
for (int x = 0; x < new_width - 1; x++) {
auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
int i = floorf(p);
float u = p - static_cast<float>(i);
auto a = get_pixel(i, old_bottom_y);
auto b = get_pixel(i + 1, old_bottom_y);
auto color = a.mixed_with(b, u);
for (int new_bottom_y = 0; new_bottom_y < new_height; new_bottom_y++) {
// Interpolate color only once and then copy into all columns.
new_bitmap->set_pixel(x, new_bottom_y, color);
}
}
for (int new_bottom_y = 0; new_bottom_y < new_height; new_bottom_y++) {
// Copy last pixel of horizontal strip
new_bitmap->set_pixel(new_width - 1, new_bottom_y, get_pixel(physical_width() - 1, old_bottom_y));
}
return new_bitmap;
} else if (old_width == 1) {
// Copy vertical strip multiple times (excluding last pixel to avoid out of bounds).
auto old_right_x = old_width - 1;
for (int y = 0; y < new_height - 1; y++) {
auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
int j = floorf(q);
float v = q - static_cast<float>(j);
auto c = get_pixel(old_right_x, j);
auto d = get_pixel(old_right_x, j + 1);
auto color = c.mixed_with(d, v);
for (int new_right_x = 0; new_right_x < new_width; new_right_x++) {
// Interpolate color only once and copy into all rows.
new_bitmap->set_pixel(new_right_x, y, color);
}
}
for (int new_right_x = 0; new_right_x < new_width; new_right_x++) {
// Copy last pixel of vertical strip
new_bitmap->set_pixel(new_right_x, new_height - 1, get_pixel(old_right_x, physical_height() - 1));
}
}
return new_bitmap;
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::cropped(Gfx::IntRect crop, Optional<BitmapFormat> new_bitmap_format) const
{
auto new_bitmap = TRY(Gfx::Bitmap::create(new_bitmap_format.value_or(format()), { crop.width(), crop.height() }, scale()));
auto scaled_crop = crop * scale();
for (int y = 0; y < scaled_crop.height(); ++y) {
for (int x = 0; x < scaled_crop.width(); ++x) {
int global_x = x + scaled_crop.left();
int global_y = y + scaled_crop.top();
if (global_x >= physical_width() || global_y >= physical_height() || global_x < 0 || global_y < 0) {
new_bitmap->set_pixel(x, y, Gfx::Color::Black);
} else {
new_bitmap->set_pixel(x, y, get_pixel(global_x, global_y));
}
}
}
return new_bitmap;
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::to_bitmap_backed_by_anonymous_buffer() const
{
if (m_buffer.is_valid()) {
// FIXME: The const_cast here is awkward.
return NonnullRefPtr { const_cast<Bitmap&>(*this) };
}
auto buffer = TRY(Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(size_in_bytes(), PAGE_SIZE)));
auto bitmap = TRY(Bitmap::create_with_anonymous_buffer(m_format, move(buffer), size(), scale()));
memcpy(bitmap->scanline(0), scanline(0), size_in_bytes());
return bitmap;
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::inverted() const
{
auto inverted_bitmap = TRY(clone());
for (auto y = 0; y < height(); y++) {
for (auto x = 0; x < width(); x++)
inverted_bitmap->set_pixel(x, y, get_pixel(x, y).inverted());
}
return inverted_bitmap;
}
Bitmap::~Bitmap()
{
if (m_needs_munmap) {
int rc = munmap(m_data, size_in_bytes());
VERIFY(rc == 0);
}
m_data = nullptr;
}
void Bitmap::strip_alpha_channel()
{
VERIFY(m_format == BitmapFormat::BGRA8888 || m_format == BitmapFormat::BGRx8888);
for (ARGB32& pixel : *this)
pixel = 0xff000000 | (pixel & 0xffffff);
m_format = BitmapFormat::BGRx8888;
}
void Bitmap::set_mmap_name([[maybe_unused]] ByteString const& name)
{
VERIFY(m_needs_munmap);
#ifdef AK_OS_SERENITY
::set_mmap_name(m_data, size_in_bytes(), name.characters());
#endif
}
void Bitmap::fill(Color color)
{
for (int y = 0; y < physical_height(); ++y) {
auto* scanline = this->scanline(y);
fast_u32_fill(scanline, color.value(), physical_width());
}
}
void Bitmap::set_volatile()
{
if (m_volatile)
return;
#ifdef AK_OS_SERENITY
int rc = madvise(m_data, size_in_bytes(), MADV_SET_VOLATILE);
if (rc < 0) {
perror("madvise(MADV_SET_VOLATILE)");
VERIFY_NOT_REACHED();
}
#endif
m_volatile = true;
}
[[nodiscard]] bool Bitmap::set_nonvolatile(bool& was_purged)
{
if (!m_volatile) {
was_purged = false;
return true;
}
#ifdef AK_OS_SERENITY
int rc = madvise(m_data, size_in_bytes(), MADV_SET_NONVOLATILE);
if (rc < 0) {
if (errno == ENOMEM) {
was_purged = true;
return false;
}
perror("madvise(MADV_SET_NONVOLATILE)");
VERIFY_NOT_REACHED();
}
was_purged = rc != 0;
#endif
m_volatile = false;
return true;
}
Gfx::ShareableBitmap Bitmap::to_shareable_bitmap() const
{
auto bitmap_or_error = to_bitmap_backed_by_anonymous_buffer();
if (bitmap_or_error.is_error())
return {};
return Gfx::ShareableBitmap { bitmap_or_error.release_value_but_fixme_should_propagate_errors(), Gfx::ShareableBitmap::ConstructWithKnownGoodBitmap };
}
ErrorOr<BackingStore> Bitmap::allocate_backing_store(BitmapFormat format, IntSize size, int scale_factor)
{
if (size_would_overflow(format, size, scale_factor))
return Error::from_string_literal("Gfx::Bitmap backing store size overflow");
auto const pitch = minimum_pitch(size.width() * scale_factor, format);
auto const data_size_in_bytes = size_in_bytes(pitch, size.height() * scale_factor);
int map_flags = MAP_ANONYMOUS | MAP_PRIVATE;
#ifdef AK_OS_SERENITY
map_flags |= MAP_PURGEABLE;
void* data = mmap_with_name(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, 0, 0, ByteString::formatted("GraphicsBitmap [{}]", size).characters());
#else
void* data = mmap(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, -1, 0);
#endif
if (data == MAP_FAILED)
return Error::from_errno(errno);
return BackingStore { data, pitch, data_size_in_bytes };
}
bool Bitmap::visually_equals(Bitmap const& other) const
{
auto own_width = width();
auto own_height = height();
if (other.width() != own_width || other.height() != own_height)
return false;
for (auto y = 0; y < own_height; ++y) {
for (auto x = 0; x < own_width; ++x) {
if (get_pixel(x, y) != other.get_pixel(x, y))
return false;
}
}
return true;
}
Optional<Color> Bitmap::solid_color(u8 alpha_threshold) const
{
Optional<Color> color;
for (auto y = 0; y < height(); ++y) {
for (auto x = 0; x < width(); ++x) {
auto const& pixel = get_pixel(x, y);
if (has_alpha_channel() && pixel.alpha() <= alpha_threshold)
continue;
if (!color.has_value())
color = pixel;
else if (pixel != color)
return {};
}
}
return color;
}
void Bitmap::flood_visit_from_point(Gfx::IntPoint start_point, int threshold,
Function<void(Gfx::IntPoint location)> pixel_reached)
{
VERIFY(rect().contains(start_point));
auto target_color = get_pixel(start_point.x(), start_point.y());
float threshold_normalized_squared = (threshold / 100.0f) * (threshold / 100.0f);
Queue<Gfx::IntPoint> points_to_visit = Queue<Gfx::IntPoint>();
points_to_visit.enqueue(start_point);
pixel_reached(start_point);
auto flood_mask = AK::Bitmap::create(width() * height(), false).release_value_but_fixme_should_propagate_errors();
flood_mask.set(width() * start_point.y() + start_point.x(), true);
// This implements a non-recursive flood fill. This is a breadth-first search of paintable neighbors
// As we find neighbors that are reachable we call the location_reached callback, add them to the queue, and mark them in the mask
while (!points_to_visit.is_empty()) {
auto current_point = points_to_visit.dequeue();
auto candidate_points = Array {
current_point.moved_left(1),
current_point.moved_right(1),
current_point.moved_up(1),
current_point.moved_down(1)
};
for (auto candidate_point : candidate_points) {
auto flood_mask_index = width() * candidate_point.y() + candidate_point.x();
if (!rect().contains(candidate_point))
continue;
auto pixel_color = get_pixel<Gfx::StorageFormat::BGRA8888>(candidate_point.x(), candidate_point.y());
auto can_paint = pixel_color.distance_squared_to(target_color) <= threshold_normalized_squared;
if (flood_mask.get(flood_mask_index) == false && can_paint) {
points_to_visit.enqueue(candidate_point);
pixel_reached(candidate_point);
}
flood_mask.set(flood_mask_index, true);
}
}
}
}