ladybird/Kernel/Process.cpp
Andreas Kling ae197deb6b Kernel: Strongly typed user & group ID's
Prior to this change, both uid_t and gid_t were typedef'ed to `u32`.
This made it easy to use them interchangeably. Let's not allow that.

This patch adds UserID and GroupID using the AK::DistinctNumeric
mechanism we've already been employing for pid_t/ProcessID.
2021-08-29 01:09:19 +02:00

886 lines
29 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Singleton.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <AK/Types.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Coredump.h>
#include <Kernel/Debug.h>
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
# include <Kernel/Devices/KCOVDevice.h>
#endif
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/FileSystem/Custody.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/KBufferBuilder.h>
#include <Kernel/KSyms.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/SharedInodeVMObject.h>
#include <Kernel/Module.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/ProcessExposed.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
#include <Kernel/TTY/TTY.h>
#include <Kernel/Thread.h>
#include <Kernel/ThreadTracer.h>
#include <LibC/errno_numbers.h>
#include <LibC/limits.h>
namespace Kernel {
static void create_signal_trampoline();
RecursiveSpinlock g_profiling_lock;
static Atomic<pid_t> next_pid;
static Singleton<SpinlockProtected<Process::List>> s_processes;
READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
static Singleton<MutexProtected<String>> s_hostname;
MutexProtected<String>& hostname()
{
return *s_hostname;
}
SpinlockProtected<Process::List>& processes()
{
return *s_processes;
}
ProcessID Process::allocate_pid()
{
// Overflow is UB, and negative PIDs wreck havoc.
// TODO: Handle PID overflow
// For example: Use an Atomic<u32>, mask the most significant bit,
// retry if PID is already taken as a PID, taken as a TID,
// takes as a PGID, taken as a SID, or zero.
return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
}
UNMAP_AFTER_INIT void Process::initialize()
{
g_modules = new HashMap<String, OwnPtr<Module>>;
next_pid.store(0, AK::MemoryOrder::memory_order_release);
// Note: This is called before scheduling is initialized, and before APs are booted.
// So we can "safely" bypass the lock here.
reinterpret_cast<String&>(hostname()) = "courage";
create_signal_trampoline();
}
NonnullRefPtrVector<Process> Process::all_processes()
{
NonnullRefPtrVector<Process> output;
processes().with([&](const auto& list) {
output.ensure_capacity(list.size_slow());
for (const auto& process : list)
output.append(NonnullRefPtr<Process>(process));
});
return output;
}
bool Process::in_group(GroupID gid) const
{
return this->gid() == gid || extra_gids().contains_slow(gid);
}
void Process::kill_threads_except_self()
{
InterruptDisabler disabler;
if (thread_count() <= 1)
return;
auto current_thread = Thread::current();
for_each_thread([&](Thread& thread) {
if (&thread == current_thread)
return;
if (auto state = thread.state(); state == Thread::State::Dead
|| state == Thread::State::Dying)
return;
// We need to detach this thread in case it hasn't been joined
thread.detach();
thread.set_should_die();
});
u32 dropped_lock_count = 0;
if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
}
void Process::kill_all_threads()
{
for_each_thread([&](Thread& thread) {
// We need to detach this thread in case it hasn't been joined
thread.detach();
thread.set_should_die();
});
}
void Process::register_new(Process& process)
{
// Note: this is essentially the same like process->ref()
RefPtr<Process> new_process = process;
processes().with([&](auto& list) {
list.prepend(process);
});
}
RefPtr<Process> Process::create_user_process(RefPtr<Thread>& first_thread, const String& path, UserID uid, GroupID gid, ProcessID parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
{
auto parts = path.split('/');
if (arguments.is_empty()) {
arguments.append(parts.last());
}
RefPtr<Custody> cwd;
if (auto parent = Process::from_pid(parent_pid))
cwd = parent->m_cwd;
if (!cwd)
cwd = VirtualFileSystem::the().root_custody();
auto process = Process::create(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty);
if (!first_thread)
return {};
if (!process->m_fds.try_resize(process->m_fds.max_open())) {
first_thread = nullptr;
return {};
}
auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
auto description = device_to_use_as_tty.open(O_RDWR).value();
auto setup_description = [&process, &description](int fd) {
process->m_fds.m_fds_metadatas[fd].allocate();
process->m_fds[fd].set(*description);
};
setup_description(0);
setup_description(1);
setup_description(2);
error = process->exec(path, move(arguments), move(environment)).error();
if (error != 0) {
dbgln("Failed to exec {}: {}", path, error);
first_thread = nullptr;
return {};
}
register_new(*process);
error = 0;
// NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
(void)process.leak_ref();
return process;
}
RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
{
auto process = Process::create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
if (!first_thread || !process)
return {};
first_thread->regs().set_ip((FlatPtr)entry);
#if ARCH(I386)
first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
#else
first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
#endif
if (do_register == RegisterProcess::Yes)
register_new(*process);
SpinlockLocker lock(g_scheduler_lock);
first_thread->set_affinity(affinity);
first_thread->set_state(Thread::State::Runnable);
return process;
}
void Process::protect_data()
{
m_protected_data_refs.unref([&]() {
MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
});
}
void Process::unprotect_data()
{
m_protected_data_refs.ref([&]() {
MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
});
}
RefPtr<Process> Process::create(RefPtr<Thread>& first_thread, const String& name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
{
auto space = Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr);
if (!space)
return {};
auto process = adopt_ref_if_nonnull(new (nothrow) Process(name, uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty));
if (!process)
return {};
auto result = process->attach_resources(space.release_nonnull(), first_thread, fork_parent);
if (result.is_error())
return {};
return process;
}
Process::Process(const String& name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
: m_name(move(name))
, m_is_kernel_process(is_kernel_process)
, m_executable(move(executable))
, m_cwd(move(cwd))
, m_tty(tty)
, m_wait_blocker_set(*this)
{
// Ensure that we protect the process data when exiting the constructor.
ProtectedDataMutationScope scope { *this };
m_protected_values.pid = allocate_pid();
m_protected_values.ppid = ppid;
m_protected_values.uid = uid;
m_protected_values.gid = gid;
m_protected_values.euid = uid;
m_protected_values.egid = gid;
m_protected_values.suid = uid;
m_protected_values.sgid = gid;
auto maybe_procfs_traits = ProcessProcFSTraits::try_create({}, make_weak_ptr());
// NOTE: This can fail, but it should be very, *very* rare.
VERIFY(!maybe_procfs_traits.is_error());
m_procfs_traits = maybe_procfs_traits.release_value();
dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
}
KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
{
m_space = move(preallocated_space);
if (fork_parent) {
// NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
first_thread = Thread::current()->clone(*this);
if (!first_thread)
return ENOMEM;
} else {
// NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
auto thread_or_error = Thread::try_create(*this);
if (thread_or_error.is_error())
return thread_or_error.error();
first_thread = thread_or_error.release_value();
first_thread->detach();
}
return KSuccess;
}
Process::~Process()
{
unprotect_data();
VERIFY(thread_count() == 0); // all threads should have been finalized
VERIFY(!m_alarm_timer);
PerformanceManager::add_process_exit_event(*this);
}
bool Process::unref() const
{
// NOTE: We need to obtain the process list lock before doing anything,
// because otherwise someone might get in between us lowering the
// refcount and acquiring the lock.
auto did_hit_zero = processes().with([&](auto& list) {
auto new_ref_count = deref_base();
if (new_ref_count > 0)
return false;
if (m_list_node.is_in_list())
list.remove(*const_cast<Process*>(this));
return true;
});
if (did_hit_zero)
delete this;
return did_hit_zero;
}
// Make sure the compiler doesn't "optimize away" this function:
extern void signal_trampoline_dummy() __attribute__((used));
void signal_trampoline_dummy()
{
#if ARCH(I386)
// The trampoline preserves the current eax, pushes the signal code and
// then calls the signal handler. We do this because, when interrupting a
// blocking syscall, that syscall may return some special error code in eax;
// This error code would likely be overwritten by the signal handler, so it's
// necessary to preserve it here.
asm(
".intel_syntax noprefix\n"
".globl asm_signal_trampoline\n"
"asm_signal_trampoline:\n"
"push ebp\n"
"mov ebp, esp\n"
"push eax\n" // we have to store eax 'cause it might be the return value from a syscall
"sub esp, 4\n" // align the stack to 16 bytes
"mov eax, [ebp+12]\n" // push the signal code
"push eax\n"
"call [ebp+8]\n" // call the signal handler
"add esp, 8\n"
"mov eax, %P0\n"
"int 0x82\n" // sigreturn syscall
".globl asm_signal_trampoline_end\n"
"asm_signal_trampoline_end:\n"
".att_syntax" ::"i"(Syscall::SC_sigreturn));
#elif ARCH(X86_64)
// The trampoline preserves the current rax, pushes the signal code and
// then calls the signal handler. We do this because, when interrupting a
// blocking syscall, that syscall may return some special error code in eax;
// This error code would likely be overwritten by the signal handler, so it's
// necessary to preserve it here.
asm(
".intel_syntax noprefix\n"
".globl asm_signal_trampoline\n"
"asm_signal_trampoline:\n"
"push rbp\n"
"mov rbp, rsp\n"
"push rax\n" // we have to store rax 'cause it might be the return value from a syscall
"sub rsp, 8\n" // align the stack to 16 bytes
"mov rdi, [rbp+24]\n" // push the signal code
"call [rbp+16]\n" // call the signal handler
"add rsp, 8\n"
"mov rax, %P0\n"
"int 0x82\n" // sigreturn syscall
".globl asm_signal_trampoline_end\n"
"asm_signal_trampoline_end:\n"
".att_syntax" ::"i"(Syscall::SC_sigreturn));
#endif
}
extern "C" char const asm_signal_trampoline[];
extern "C" char const asm_signal_trampoline_end[];
void create_signal_trampoline()
{
// NOTE: We leak this region.
g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).leak_ptr();
g_signal_trampoline_region->set_syscall_region(true);
size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
g_signal_trampoline_region->set_writable(false);
g_signal_trampoline_region->remap();
}
void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
{
VERIFY(!is_dead());
VERIFY(&Process::current() == this);
if (out_of_memory) {
dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
} else {
if (ip >= kernel_load_base && g_kernel_symbols_available) {
auto* symbol = symbolicate_kernel_address(ip);
dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
} else {
dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
}
dump_backtrace();
}
{
ProtectedDataMutationScope scope { *this };
m_protected_values.termination_signal = signal;
}
set_should_generate_coredump(!out_of_memory);
address_space().dump_regions();
VERIFY(is_user_process());
die();
// We can not return from here, as there is nowhere
// to unwind to, so die right away.
Thread::current()->die_if_needed();
VERIFY_NOT_REACHED();
}
RefPtr<Process> Process::from_pid(ProcessID pid)
{
return processes().with([&](const auto& list) -> RefPtr<Process> {
for (auto& process : list) {
if (process.pid() == pid)
return &process;
}
return {};
});
}
const Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i) const
{
SpinlockLocker lock(m_fds_lock);
if (m_fds_metadatas.size() <= i)
return nullptr;
if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
return &metadata;
return nullptr;
}
Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i)
{
SpinlockLocker lock(m_fds_lock);
if (m_fds_metadatas.size() <= i)
return nullptr;
if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
return &metadata;
return nullptr;
}
const Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i) const
{
SpinlockLocker lock(m_fds_lock);
VERIFY(m_fds_metadatas[i].is_allocated());
return m_fds_metadatas[i];
}
Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i)
{
SpinlockLocker lock(m_fds_lock);
VERIFY(m_fds_metadatas[i].is_allocated());
return m_fds_metadatas[i];
}
RefPtr<FileDescription> Process::FileDescriptions::file_description(int fd) const
{
SpinlockLocker lock(m_fds_lock);
if (fd < 0)
return nullptr;
if (static_cast<size_t>(fd) < m_fds_metadatas.size())
return m_fds_metadatas[fd].description();
return nullptr;
}
void Process::FileDescriptions::enumerate(Function<void(const FileDescriptionAndFlags&)> callback) const
{
SpinlockLocker lock(m_fds_lock);
for (auto& file_description_metadata : m_fds_metadatas) {
callback(file_description_metadata);
}
}
void Process::FileDescriptions::change_each(Function<void(FileDescriptionAndFlags&)> callback)
{
SpinlockLocker lock(m_fds_lock);
for (auto& file_description_metadata : m_fds_metadatas) {
callback(file_description_metadata);
}
}
size_t Process::FileDescriptions::open_count() const
{
size_t count = 0;
enumerate([&](auto& file_description_metadata) {
if (file_description_metadata.is_valid())
++count;
});
return count;
}
KResultOr<Process::ScopedDescriptionAllocation> Process::FileDescriptions::allocate(int first_candidate_fd)
{
SpinlockLocker lock(m_fds_lock);
for (size_t i = first_candidate_fd; i < max_open(); ++i) {
if (!m_fds_metadatas[i].is_allocated()) {
m_fds_metadatas[i].allocate();
return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
}
}
return EMFILE;
}
Time kgettimeofday()
{
return TimeManagement::now();
}
siginfo_t Process::wait_info()
{
siginfo_t siginfo {};
siginfo.si_signo = SIGCHLD;
siginfo.si_pid = pid().value();
siginfo.si_uid = uid().value();
if (m_protected_values.termination_signal) {
siginfo.si_status = m_protected_values.termination_signal;
siginfo.si_code = CLD_KILLED;
} else {
siginfo.si_status = m_protected_values.termination_status;
siginfo.si_code = CLD_EXITED;
}
return siginfo;
}
Custody& Process::current_directory()
{
if (!m_cwd)
m_cwd = VirtualFileSystem::the().root_custody();
return *m_cwd;
}
KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
{
if (path_length == 0)
return EINVAL;
if (path_length > PATH_MAX)
return ENAMETOOLONG;
auto string_or_error = try_copy_kstring_from_user(user_path, path_length);
if (string_or_error.is_error())
return string_or_error.error();
return string_or_error.release_value();
}
KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
{
Userspace<char const*> path_characters((FlatPtr)path.characters);
return get_syscall_path_argument(path_characters, path.length);
}
bool Process::dump_core()
{
VERIFY(is_dumpable());
VERIFY(should_generate_coredump());
dbgln("Generating coredump for pid: {}", pid().value());
auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
auto coredump = Coredump::create(*this, coredump_path);
if (!coredump)
return false;
return !coredump->write().is_error();
}
bool Process::dump_perfcore()
{
VERIFY(is_dumpable());
VERIFY(m_perf_event_buffer);
dbgln("Generating perfcore for pid: {}", pid().value());
// Try to generate a filename which isn't already used.
auto base_filename = String::formatted("{}_{}", name(), pid().value());
auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
if (description_or_error.is_error()) {
dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
return false;
}
auto& description = *description_or_error.value();
KBufferBuilder builder;
if (!m_perf_event_buffer->to_json(builder)) {
dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
return false;
}
auto json = builder.build();
if (!json) {
dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
return false;
}
auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
if (description.write(json_buffer, json->size()).is_error()) {
return false;
dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
}
dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
return true;
}
void Process::finalize()
{
VERIFY(Thread::current() == g_finalizer);
dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
if (is_dumpable()) {
if (m_should_generate_coredump)
dump_core();
if (m_perf_event_buffer) {
dump_perfcore();
TimeManagement::the().disable_profile_timer();
}
}
m_threads_for_coredump.clear();
if (m_alarm_timer)
TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
m_fds.clear();
m_tty = nullptr;
m_executable = nullptr;
m_cwd = nullptr;
m_arguments.clear();
m_environment.clear();
m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
{
// FIXME: PID/TID BUG
if (auto parent_thread = Thread::from_tid(ppid().value())) {
if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
parent_thread->send_signal(SIGCHLD, this);
}
}
if (!!ppid()) {
if (auto parent = Process::from_pid(ppid())) {
parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
}
}
unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
m_space->remove_all_regions({});
VERIFY(ref_count() > 0);
// WaitBlockerSet::finalize will be in charge of dropping the last
// reference if there are still waiters around, or whenever the last
// waitable states are consumed. Unless there is no parent around
// anymore, in which case we'll just drop it right away.
m_wait_blocker_set.finalize();
}
void Process::disowned_by_waiter(Process& process)
{
m_wait_blocker_set.disowned_by_waiter(process);
}
void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
{
if (auto parent = Process::from_pid(ppid()))
parent->m_wait_blocker_set.unblock(*this, flags, signal);
}
void Process::die()
{
auto expected = State::Running;
if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
// It's possible that another thread calls this at almost the same time
// as we can't always instantly kill other threads (they may be blocked)
// So if we already were called then other threads should stop running
// momentarily and we only really need to service the first thread
return;
}
// Let go of the TTY, otherwise a slave PTY may keep the master PTY from
// getting an EOF when the last process using the slave PTY dies.
// If the master PTY owner relies on an EOF to know when to wait() on a
// slave owner, we have to allow the PTY pair to be torn down.
m_tty = nullptr;
VERIFY(m_threads_for_coredump.is_empty());
for_each_thread([&](auto& thread) {
m_threads_for_coredump.append(thread);
});
processes().with([&](const auto& list) {
for (auto it = list.begin(); it != list.end();) {
auto& process = *it;
++it;
if (process.has_tracee_thread(pid())) {
dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
process.stop_tracing();
auto err = process.send_signal(SIGSTOP, this);
if (err.is_error())
dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
}
}
});
kill_all_threads();
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
KCOVDevice::free_process();
#endif
}
void Process::terminate_due_to_signal(u8 signal)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(signal < 32);
VERIFY(&Process::current() == this);
dbgln("Terminating {} due to signal {}", *this, signal);
{
ProtectedDataMutationScope scope { *this };
m_protected_values.termination_status = 0;
m_protected_values.termination_signal = signal;
}
die();
}
KResult Process::send_signal(u8 signal, Process* sender)
{
// Try to send it to the "obvious" main thread:
auto receiver_thread = Thread::from_tid(pid().value());
// If the main thread has died, there may still be other threads:
if (!receiver_thread) {
// The first one should be good enough.
// Neither kill(2) nor kill(3) specify any selection precedure.
for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
receiver_thread = &thread;
return IterationDecision::Break;
});
}
if (receiver_thread) {
receiver_thread->send_signal(signal, sender);
return KSuccess;
}
return ESRCH;
}
RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity, bool joinable)
{
VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
// FIXME: Do something with guard pages?
auto thread_or_error = Thread::try_create(*this);
if (thread_or_error.is_error())
return {};
auto thread = thread_or_error.release_value();
thread->set_name(move(name));
thread->set_affinity(affinity);
thread->set_priority(priority);
if (!joinable)
thread->detach();
auto& regs = thread->regs();
regs.set_ip((FlatPtr)entry);
regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
SpinlockLocker lock(g_scheduler_lock);
thread->set_state(Thread::State::Runnable);
return thread;
}
void Process::FileDescriptionAndFlags::clear()
{
// FIXME: Verify Process::m_fds_lock is locked!
m_description = nullptr;
m_flags = 0;
}
void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
{
// FIXME: Verify Process::m_fds_lock is locked!
m_description = move(description);
m_flags = flags;
}
void Process::set_tty(TTY* tty)
{
m_tty = tty;
}
KResult Process::start_tracing_from(ProcessID tracer)
{
auto thread_tracer = ThreadTracer::create(tracer);
if (!thread_tracer)
return ENOMEM;
m_tracer = move(thread_tracer);
return KSuccess;
}
void Process::stop_tracing()
{
m_tracer = nullptr;
}
void Process::tracer_trap(Thread& thread, const RegisterState& regs)
{
VERIFY(m_tracer.ptr());
m_tracer->set_regs(regs);
thread.send_urgent_signal_to_self(SIGTRAP);
}
bool Process::create_perf_events_buffer_if_needed()
{
if (!m_perf_event_buffer) {
m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
}
return !!m_perf_event_buffer;
}
void Process::delete_perf_events_buffer()
{
if (m_perf_event_buffer)
m_perf_event_buffer = nullptr;
}
bool Process::remove_thread(Thread& thread)
{
ProtectedDataMutationScope scope { *this };
auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
VERIFY(thread_cnt_before != 0);
thread_list().with([&](auto& thread_list) {
thread_list.remove(thread);
});
return thread_cnt_before == 1;
}
bool Process::add_thread(Thread& thread)
{
ProtectedDataMutationScope scope { *this };
bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
thread_list().with([&](auto& thread_list) {
thread_list.append(thread);
});
return is_first;
}
void Process::set_dumpable(bool dumpable)
{
if (dumpable == m_protected_values.dumpable)
return;
ProtectedDataMutationScope scope { *this };
m_protected_values.dumpable = dumpable;
}
KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
{
// Write it into the first available property slot.
for (auto& slot : m_coredump_properties) {
if (slot.key)
continue;
slot.key = move(key);
slot.value = move(value);
return KSuccess;
}
return ENOBUFS;
}
KResult Process::try_set_coredump_property(StringView key, StringView value)
{
auto key_kstring = KString::try_create(key);
auto value_kstring = KString::try_create(value);
if (key_kstring && value_kstring)
return set_coredump_property(key_kstring.release_nonnull(), value_kstring.release_nonnull());
return ENOMEM;
};
}