ladybird/Kernel/Syscalls/sigaction.cpp

338 lines
13 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/SmapDisabler.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Process.h>
namespace Kernel {
ErrorOr<FlatPtr> Process::sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
TRY(require_promise(Pledge::sigaction));
auto* current_thread = Thread::current();
u32 previous_signal_mask;
if (set) {
auto set_value = TRY(copy_typed_from_user(set));
switch (how) {
case SIG_BLOCK:
previous_signal_mask = current_thread->signal_mask_block(set_value, true);
break;
case SIG_UNBLOCK:
previous_signal_mask = current_thread->signal_mask_block(set_value, false);
break;
case SIG_SETMASK:
previous_signal_mask = current_thread->update_signal_mask(set_value);
break;
default:
return EINVAL;
}
} else {
previous_signal_mask = current_thread->signal_mask();
}
if (old_set) {
TRY(copy_to_user(old_set, &previous_signal_mask));
}
return 0;
}
ErrorOr<FlatPtr> Process::sys$sigpending(Userspace<sigset_t*> set)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
TRY(require_promise(Pledge::stdio));
auto pending_signals = Thread::current()->pending_signals();
TRY(copy_to_user(set, &pending_signals));
return 0;
}
ErrorOr<FlatPtr> Process::sys$sigaction(int signum, Userspace<const sigaction*> user_act, Userspace<sigaction*> user_old_act)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
TRY(require_promise(Pledge::sigaction));
if (signum < 1 || signum >= 32 || signum == SIGKILL || signum == SIGSTOP)
return EINVAL;
InterruptDisabler disabler; // FIXME: This should use a narrower lock. Maybe a way to ignore signals temporarily?
auto& action = Thread::current()->m_signal_action_data[signum];
if (user_old_act) {
sigaction old_act {};
old_act.sa_flags = action.flags;
old_act.sa_sigaction = reinterpret_cast<decltype(old_act.sa_sigaction)>(action.handler_or_sigaction.as_ptr());
TRY(copy_to_user(user_old_act, &old_act));
}
if (user_act) {
auto act = TRY(copy_typed_from_user(user_act));
action.flags = act.sa_flags;
action.handler_or_sigaction = VirtualAddress { reinterpret_cast<void*>(act.sa_sigaction) };
}
return 0;
}
ErrorOr<FlatPtr> Process::sys$sigreturn([[maybe_unused]] RegisterState& registers)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
TRY(require_promise(Pledge::stdio));
SmapDisabler disabler;
#if ARCH(I386)
// Here, we restore the state pushed by dispatch signal and asm_signal_trampoline.
u32* stack_ptr = (u32*)registers.userspace_esp;
u32 smuggled_eax = *stack_ptr;
// pop the stored eax, ebp, return address, handler and signal code
stack_ptr += 5;
Thread::current()->m_signal_mask = *stack_ptr;
stack_ptr++;
// pop edi, esi, ebp, esp, ebx, edx, ecx and eax
memcpy(&registers.edi, stack_ptr, 8 * sizeof(FlatPtr));
stack_ptr += 8;
registers.eip = *stack_ptr;
stack_ptr++;
registers.eflags = (registers.eflags & ~safe_eflags_mask) | (*stack_ptr & safe_eflags_mask);
stack_ptr++;
registers.userspace_esp = registers.esp;
return smuggled_eax;
#else
// Here, we restore the state pushed by dispatch signal and asm_signal_trampoline.
FlatPtr* stack_ptr = (FlatPtr*)registers.userspace_rsp;
FlatPtr smuggled_rax = *stack_ptr;
// pop the stored rax, rbp, return address, handler and signal code
stack_ptr += 5;
Thread::current()->m_signal_mask = *stack_ptr;
stack_ptr++;
// pop rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, r8, r9, r10, r11, r12, r13, r14 and r15
memcpy(&registers.rdi, stack_ptr, 16 * sizeof(FlatPtr));
stack_ptr += 16;
registers.rip = *stack_ptr;
stack_ptr++;
registers.rflags = (registers.rflags & ~safe_eflags_mask) | (*stack_ptr & safe_eflags_mask);
stack_ptr++;
registers.userspace_rsp = registers.rsp;
return smuggled_rax;
#endif
}
ErrorOr<void> Process::remap_range_as_stack(FlatPtr address, size_t size)
{
// FIXME: This duplicates a lot of logic from sys$mprotect, this should be abstracted out somehow
auto range_to_remap = TRY(Memory::expand_range_to_page_boundaries(address, size));
if (!range_to_remap.size())
return EINVAL;
if (!is_user_range(range_to_remap))
return EFAULT;
if (auto* whole_region = address_space().find_region_from_range(range_to_remap)) {
if (!whole_region->is_mmap())
return EPERM;
if (!whole_region->vmobject().is_anonymous() || whole_region->is_shared())
return EINVAL;
whole_region->unsafe_clear_access();
whole_region->set_readable(true);
whole_region->set_writable(true);
whole_region->set_stack(true);
whole_region->set_syscall_region(false);
whole_region->clear_to_zero();
whole_region->remap();
return {};
}
if (auto* old_region = address_space().find_region_containing(range_to_remap)) {
if (!old_region->is_mmap())
return EPERM;
if (!old_region->vmobject().is_anonymous() || old_region->is_shared())
return EINVAL;
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address, but do not deallocate it yet
auto region = address_space().take_region(*old_region);
// Unmap the old region here, specifying that we *don't* want the VM deallocated.
region->unmap(Memory::Region::ShouldDeallocateVirtualRange::No);
// This vector is the region(s) adjacent to our range.
// We need to allocate a new region for the range we wanted to change permission bits on.
auto adjacent_regions = TRY(address_space().try_split_region_around_range(*region, range_to_remap));
size_t new_range_offset_in_vmobject = region->offset_in_vmobject() + (range_to_remap.base().get() - region->range().base().get());
auto* new_region = TRY(address_space().try_allocate_split_region(*region, range_to_remap, new_range_offset_in_vmobject));
new_region->unsafe_clear_access();
new_region->set_readable(true);
new_region->set_writable(true);
new_region->set_stack(true);
new_region->set_syscall_region(false);
new_region->clear_to_zero();
// Map the new regions using our page directory (they were just allocated and don't have one).
for (auto* adjacent_region : adjacent_regions) {
TRY(adjacent_region->map(address_space().page_directory()));
}
TRY(new_region->map(address_space().page_directory()));
return {};
}
if (const auto& regions = TRY(address_space().find_regions_intersecting(range_to_remap)); regions.size()) {
size_t full_size_found = 0;
// Check that all intersecting regions are compatible.
for (const auto* region : regions) {
if (!region->is_mmap())
return EPERM;
if (!region->vmobject().is_anonymous() || region->is_shared())
return EINVAL;
full_size_found += region->range().intersect(range_to_remap).size();
}
if (full_size_found != range_to_remap.size())
return ENOMEM;
// Finally, iterate over each region, either updating its access flags if the range covers it wholly,
// or carving out a new subregion with the appropriate access flags set.
for (auto* old_region : regions) {
const auto intersection_to_remap = range_to_remap.intersect(old_region->range());
// If the region is completely covered by range, simply update the access flags
if (intersection_to_remap == old_region->range()) {
old_region->unsafe_clear_access();
old_region->set_readable(true);
old_region->set_writable(true);
old_region->set_stack(true);
old_region->set_syscall_region(false);
old_region->clear_to_zero();
old_region->remap();
continue;
}
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address, but dont deallocate it yet
auto region = address_space().take_region(*old_region);
// Unmap the old region here, specifying that we *don't* want the VM deallocated.
region->unmap(Memory::Region::ShouldDeallocateVirtualRange::No);
// This vector is the region(s) adjacent to our range.
// We need to allocate a new region for the range we wanted to change permission bits on.
auto adjacent_regions = TRY(address_space().try_split_region_around_range(*old_region, intersection_to_remap));
// Since the range is not contained in a single region, it can only partially cover its starting and ending region,
// therefore carving out a chunk from the region will always produce a single extra region, and not two.
VERIFY(adjacent_regions.size() == 1);
size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (intersection_to_remap.base().get() - old_region->range().base().get());
auto* new_region = TRY(address_space().try_allocate_split_region(*region, intersection_to_remap, new_range_offset_in_vmobject));
new_region->unsafe_clear_access();
new_region->set_readable(true);
new_region->set_writable(true);
new_region->set_stack(true);
new_region->set_syscall_region(false);
new_region->clear_to_zero();
// Map the new region using our page directory (they were just allocated and don't have one) if any.
TRY(adjacent_regions[0]->map(address_space().page_directory()));
TRY(new_region->map(address_space().page_directory()));
}
return {};
}
return EINVAL;
}
ErrorOr<FlatPtr> Process::sys$sigaltstack(Userspace<const stack_t*> user_ss, Userspace<stack_t*> user_old_ss)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
TRY(require_promise(Pledge::sigaction));
if (user_old_ss) {
stack_t old_ss_value {};
old_ss_value.ss_sp = (void*)Thread::current()->m_alternative_signal_stack;
old_ss_value.ss_size = Thread::current()->m_alternative_signal_stack_size;
old_ss_value.ss_flags = 0;
if (!Thread::current()->has_alternative_signal_stack())
old_ss_value.ss_flags = SS_DISABLE;
else if (Thread::current()->is_in_alternative_signal_stack())
old_ss_value.ss_flags = SS_ONSTACK;
TRY(copy_to_user(user_old_ss, &old_ss_value));
}
if (user_ss) {
auto ss = TRY(copy_typed_from_user(user_ss));
if (Thread::current()->is_in_alternative_signal_stack())
return EPERM;
if (ss.ss_flags == SS_DISABLE) {
Thread::current()->m_alternative_signal_stack_size = 0;
Thread::current()->m_alternative_signal_stack = 0;
} else if (ss.ss_flags == 0) {
if (ss.ss_size <= MINSIGSTKSZ)
return ENOMEM;
if (Checked<FlatPtr>::addition_would_overflow((FlatPtr)ss.ss_sp, ss.ss_size))
return ENOMEM;
// In order to preserve compatibility with our MAP_STACK, W^X and syscall region
// protections, sigaltstack ranges are carved out of their regions, zeroed, and
// turned into read/writable MAP_STACK-enabled regions.
// This is inspired by OpenBSD's solution: https://man.openbsd.org/sigaltstack.2
TRY(remap_range_as_stack((FlatPtr)ss.ss_sp, ss.ss_size));
Thread::current()->m_alternative_signal_stack = (FlatPtr)ss.ss_sp;
Thread::current()->m_alternative_signal_stack_size = ss.ss_size;
} else {
return EINVAL;
}
}
return 0;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/sigtimedwait.html
ErrorOr<FlatPtr> Process::sys$sigtimedwait(Userspace<const sigset_t*> set, Userspace<siginfo_t*> info, Userspace<const timespec*> timeout)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
TRY(require_promise(Pledge::sigaction));
sigset_t set_value;
TRY(copy_from_user(&set_value, set));
Thread::BlockTimeout block_timeout = {};
if (timeout) {
auto timeout_time = TRY(copy_time_from_user(timeout));
block_timeout = Thread::BlockTimeout(false, &timeout_time);
}
siginfo_t info_value = {};
auto block_result = Thread::current()->block<Thread::SignalBlocker>(block_timeout, set_value, info_value);
if (block_result.was_interrupted())
return EINTR;
// We check for an unset signal instead of directly checking for a timeout interruption
// in order to allow polling the pending signals by setting the timeout to 0.
if (info_value.si_signo == SIGINVAL) {
VERIFY(block_result == Thread::BlockResult::InterruptedByTimeout);
return EAGAIN;
}
if (info)
TRY(copy_to_user(info, &info_value));
return info_value.si_signo;
}
}