ladybird/LibC/malloc.cpp
Andreas Kling 189b342e6f LibC: Add mmap_with_name() that names the allocation immediately.
This allows us to skip the separate call to set_mmap_name() in code that
we control, e.g malloc() and GraphicsBitmap.
2019-05-19 15:54:56 +02:00

310 lines
8.6 KiB
C++

#include <AK/Bitmap.h>
#include <AK/InlineLinkedList.h>
#include <AK/Vector.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <serenity.h>
// FIXME: Thread safety.
//#define MALLOC_DEBUG
#define RECYCLE_BIG_ALLOCATIONS
#define MALLOC_SCRUB_BYTE 0x85
#define FREE_SCRUB_BYTE 0x82
#define MAGIC_PAGE_HEADER 0x42657274
#define MAGIC_BIGALLOC_HEADER 0x42697267
#define PAGE_ROUND_UP(x) ((((size_t)(x)) + PAGE_SIZE-1) & (~(PAGE_SIZE-1)))
static const size_t number_of_chunked_blocks_to_keep_around_per_size_class = 32;
static const size_t number_of_big_blocks_to_keep_around_per_size_class = 8;
static bool s_log_malloc = false;
static bool s_scrub_malloc = true;
static bool s_scrub_free = true;
static unsigned short size_classes[] = { 8, 16, 32, 64, 128, 252, 508, 1016, 2036, 0 };
static constexpr size_t num_size_classes = sizeof(size_classes) / sizeof(unsigned short);
struct CommonHeader {
size_t m_magic;
size_t m_size;
};
struct BigAllocationBlock : public CommonHeader {
BigAllocationBlock(size_t size)
{
m_magic = MAGIC_BIGALLOC_HEADER;
m_size = size;
}
unsigned char* m_slot[0];
};
struct FreelistEntry {
FreelistEntry* next;
};
struct ChunkedBlock : public CommonHeader, public InlineLinkedListNode<ChunkedBlock> {
ChunkedBlock(size_t bytes_per_chunk)
{
m_magic = MAGIC_PAGE_HEADER;
m_size = bytes_per_chunk;
m_free_chunks = chunk_capacity();
m_freelist = (FreelistEntry*)chunk(0);
for (size_t i = 0; i < chunk_capacity(); ++i) {
auto* entry = (FreelistEntry*)chunk(i);
if (i != chunk_capacity() - 1)
entry->next = (FreelistEntry*)chunk(i + 1);
else
entry->next = nullptr;
}
}
ChunkedBlock* m_prev { nullptr };
ChunkedBlock* m_next { nullptr };
FreelistEntry* m_freelist { nullptr };
unsigned short m_free_chunks { 0 };
unsigned char m_slot[0];
void* chunk(int index)
{
return &m_slot[index * m_size];
}
bool is_full() const { return m_free_chunks == 0; }
size_t bytes_per_chunk() const { return m_size; }
size_t free_chunks() const { return m_free_chunks; }
size_t used_chunks() const { return chunk_capacity() - m_free_chunks; }
size_t chunk_capacity() const { return (PAGE_SIZE - sizeof(ChunkedBlock)) / m_size; }
};
struct Allocator {
size_t size { 0 };
size_t block_count { 0 };
InlineLinkedList<ChunkedBlock> usable_blocks;
InlineLinkedList<ChunkedBlock> full_blocks;
};
struct BigAllocator {
Vector<BigAllocationBlock*, number_of_big_blocks_to_keep_around_per_size_class> blocks;
};
static Allocator g_allocators[num_size_classes];
static BigAllocator g_big_allocators[1];
static Allocator* allocator_for_size(size_t size, size_t& good_size)
{
for (int i = 0; size_classes[i]; ++i) {
if (size <= size_classes[i]) {
good_size = size_classes[i];
return &g_allocators[i];
}
}
good_size = PAGE_ROUND_UP(size);
return nullptr;
}
static BigAllocator* big_allocator_for_size(size_t size)
{
if (size == 4096)
return &g_big_allocators[0];
return nullptr;
}
extern "C" {
size_t malloc_good_size(size_t size)
{
for (int i = 0; size_classes[i]; ++i) {
if (size < size_classes[i])
return size_classes[i];
}
return PAGE_ROUND_UP(size);
}
static void* os_alloc(size_t size, const char* name)
{
return mmap_with_name(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0, name);
}
static void os_free(void* ptr, size_t size)
{
int rc = munmap(ptr, size);
assert(rc == 0);
}
void* malloc(size_t size)
{
if (s_log_malloc)
dbgprintf("LibC: malloc(%u)\n", size);
if (!size)
return nullptr;
size_t good_size;
auto* allocator = allocator_for_size(size, good_size);
if (!allocator) {
size_t real_size = PAGE_ROUND_UP(sizeof(BigAllocationBlock) + size);
#ifdef RECYCLE_BIG_ALLOCATIONS
if (auto* allocator = big_allocator_for_size(real_size)) {
if (!allocator->blocks.is_empty()) {
auto* block = allocator->blocks.take_last();
return &block->m_slot[0];
}
}
#endif
char buffer[64];
snprintf(buffer, sizeof(buffer), "malloc: BigAllocationBlock(%u)", real_size);
auto* block = (BigAllocationBlock*)os_alloc(real_size, buffer);
new (block) BigAllocationBlock(real_size);
return &block->m_slot[0];
}
ChunkedBlock* block = nullptr;
for (block = allocator->usable_blocks.head(); block; block = block->next()) {
if (block->free_chunks())
break;
}
if (!block) {
char buffer[64];
snprintf(buffer, sizeof(buffer), "malloc: ChunkedBlock(%u)", good_size);
block = (ChunkedBlock*)os_alloc(PAGE_SIZE, buffer);
new (block) ChunkedBlock(good_size);
allocator->usable_blocks.append(block);
++allocator->block_count;
}
--block->m_free_chunks;
void* ptr = block->m_freelist;
block->m_freelist = block->m_freelist->next;
if (block->is_full()) {
#ifdef MALLOC_DEBUG
dbgprintf("Block %p is now full in size class %u\n", block, good_size);
#endif
allocator->usable_blocks.remove(block);
allocator->full_blocks.append(block);
}
#ifdef MALLOC_DEBUG
dbgprintf("LibC: allocated %p (chunk %d in block %p, size %u)\n", ptr, index, block, block->bytes_per_chunk());
#endif
if (s_scrub_malloc)
memset(ptr, MALLOC_SCRUB_BYTE, block->m_size);
return ptr;
}
void free(void* ptr)
{
if (!ptr)
return;
void* page_base = (void*)((uintptr_t)ptr & (uintptr_t)~0xfff);
size_t magic = *(size_t*)page_base;
if (magic == MAGIC_BIGALLOC_HEADER) {
auto* block = (BigAllocationBlock*)page_base;
#ifdef RECYCLE_BIG_ALLOCATIONS
if (auto* allocator = big_allocator_for_size(block->m_size)) {
if (allocator->blocks.size() < number_of_big_blocks_to_keep_around_per_size_class) {
allocator->blocks.append(block);
return;
}
}
#endif
os_free(block, block->m_size);
return;
}
assert(magic == MAGIC_PAGE_HEADER);
auto* block = (ChunkedBlock*)page_base;
#ifdef MALLOC_DEBUG
dbgprintf("LibC: freeing %p in allocator %p (size=%u, used=%u)\n", ptr, page, page->bytes_per_chunk(), page->used_chunks());
#endif
if (s_scrub_free)
memset(ptr, FREE_SCRUB_BYTE, block->bytes_per_chunk());
auto* entry = (FreelistEntry*)ptr;
entry->next = block->m_freelist;
block->m_freelist = entry;
if (block->is_full()) {
size_t good_size;
auto* allocator = allocator_for_size(block->m_size, good_size);
#ifdef MALLOC_DEBUG
dbgprintf("Block %p no longer full in size class %u\n", block, good_size);
#endif
allocator->full_blocks.remove(block);
allocator->usable_blocks.prepend(block);
}
++block->m_free_chunks;
if (!block->used_chunks()) {
size_t good_size;
auto* allocator = allocator_for_size(block->m_size, good_size);
if (allocator->block_count < number_of_chunked_blocks_to_keep_around_per_size_class) {
#ifdef MALLOC_DEBUG
dbgprintf("Keeping block %p around for size class %u\n", block, good_size);
#endif
if (allocator->usable_blocks.tail() != block) {
#ifdef MALLOC_DEBUG
dbgprintf("Moving block %p to tail of list for size class %u\n", block, good_size);
#endif
allocator->usable_blocks.remove(block);
allocator->usable_blocks.append(block);
}
return;
}
#ifdef MALLOC_DEBUG
dbgprintf("Releasing block %p for size class %u\n", block, good_size);
#endif
allocator->usable_blocks.remove(block);
--allocator->block_count;
os_free(block, PAGE_SIZE);
}
}
void* calloc(size_t count, size_t size)
{
size_t new_size = count * size;
auto* ptr = malloc(new_size);
memset(ptr, 0, new_size);
return ptr;
}
void* realloc(void* ptr, size_t size)
{
if (!ptr)
return malloc(size);
size_t old_size = 0;
void* page_base = (void*)((uintptr_t)ptr & (uintptr_t)~0xfff);
auto* header = (const CommonHeader*)page_base;
old_size = header->m_size;
if (size == old_size)
return ptr;
auto* new_ptr = malloc(size);
memcpy(new_ptr, ptr, min(old_size, size));
free(ptr);
return new_ptr;
}
void __malloc_init()
{
if (getenv("LIBC_NOSCRUB_MALLOC"))
s_scrub_malloc = false;
if (getenv("LIBC_NOSCRUB_FREE"))
s_scrub_free = false;
if (getenv("LIBC_LOG_MALLOC"))
s_log_malloc = true;
}
}