ladybird/Kernel/Memory/MemoryManager.h
Andreas Kling a23edd42b8 Kernel: Store kernel memory regions in a RedBlackTree
We were already doing this for userspace memory regions (in the
Memory::AddressSpace class), so let's do it for kernel regions as well.

This gives a nice speed-up on test-js and probably basically everything
else as well. :^)
2021-12-11 20:13:20 +01:00

351 lines
11 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/HashTable.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/String.h>
#include <Kernel/Forward.h>
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/AllocationStrategy.h>
#include <Kernel/Memory/PhysicalPage.h>
#include <Kernel/Memory/PhysicalRegion.h>
#include <Kernel/Memory/Region.h>
#include <Kernel/Memory/VMObject.h>
namespace Kernel {
class PageDirectoryEntry;
}
namespace Kernel::Memory {
constexpr bool page_round_up_would_wrap(FlatPtr x)
{
return x > (explode_byte(0xFF) & ~0xFFF);
}
constexpr FlatPtr page_round_up(FlatPtr x)
{
FlatPtr rounded = (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
// Rounding up >0xfffff000 wraps back to 0. That's never what we want.
VERIFY(x == 0 || rounded != 0);
return rounded;
}
constexpr FlatPtr page_round_down(FlatPtr x)
{
return ((FlatPtr)(x)) & ~(PAGE_SIZE - 1);
}
inline FlatPtr virtual_to_low_physical(FlatPtr virtual_)
{
return virtual_ - physical_to_virtual_offset;
}
enum class UsedMemoryRangeType {
LowMemory = 0,
Prekernel,
Kernel,
BootModule,
PhysicalPages,
};
static constexpr StringView UserMemoryRangeTypeNames[] {
"Low memory",
"Prekernel",
"Kernel",
"Boot module",
"Physical Pages"
};
struct UsedMemoryRange {
UsedMemoryRangeType type {};
PhysicalAddress start;
PhysicalAddress end;
};
struct ContiguousReservedMemoryRange {
PhysicalAddress start;
PhysicalSize length {};
};
enum class PhysicalMemoryRangeType {
Usable = 0,
Reserved,
ACPI_Reclaimable,
ACPI_NVS,
BadMemory,
Unknown,
};
struct PhysicalMemoryRange {
PhysicalMemoryRangeType type { PhysicalMemoryRangeType::Unknown };
PhysicalAddress start;
PhysicalSize length {};
};
#define MM Kernel::Memory::MemoryManager::the()
struct MemoryManagerData {
static ProcessorSpecificDataID processor_specific_data_id() { return ProcessorSpecificDataID::MemoryManager; }
Spinlock m_quickmap_in_use;
u32 m_quickmap_prev_flags;
PhysicalAddress m_last_quickmap_pd;
PhysicalAddress m_last_quickmap_pt;
};
// NOLINTNEXTLINE(readability-redundant-declaration) FIXME: Why do we declare this here *and* in Thread.h?
extern RecursiveSpinlock s_mm_lock;
// This class represents a set of committed physical pages.
// When you ask MemoryManager to commit pages for you, you get one of these in return.
// You can allocate pages from it via `take_one()`
// It will uncommit any (unallocated) remaining pages when destroyed.
class CommittedPhysicalPageSet {
AK_MAKE_NONCOPYABLE(CommittedPhysicalPageSet);
public:
CommittedPhysicalPageSet(Badge<MemoryManager>, size_t page_count)
: m_page_count(page_count)
{
}
CommittedPhysicalPageSet(CommittedPhysicalPageSet&& other)
: m_page_count(exchange(other.m_page_count, 0))
{
}
~CommittedPhysicalPageSet();
bool is_empty() const { return m_page_count == 0; }
size_t page_count() const { return m_page_count; }
[[nodiscard]] NonnullRefPtr<PhysicalPage> take_one();
void uncommit_one();
void operator=(CommittedPhysicalPageSet&&) = delete;
private:
size_t m_page_count { 0 };
};
class MemoryManager {
AK_MAKE_ETERNAL
friend class PageDirectory;
friend class AnonymousVMObject;
friend class Region;
friend class VMObject;
public:
static MemoryManager& the();
static bool is_initialized();
static void initialize(u32 cpu);
static inline MemoryManagerData& get_data()
{
return ProcessorSpecific<MemoryManagerData>::get();
}
PageFaultResponse handle_page_fault(PageFault const&);
void set_page_writable_direct(VirtualAddress, bool);
void protect_readonly_after_init_memory();
void unmap_text_after_init();
void unmap_ksyms_after_init();
static void enter_process_address_space(Process&);
static void enter_address_space(AddressSpace&);
bool validate_user_stack_no_lock(AddressSpace&, VirtualAddress) const;
bool validate_user_stack(AddressSpace&, VirtualAddress) const;
enum class ShouldZeroFill {
No,
Yes
};
ErrorOr<CommittedPhysicalPageSet> commit_user_physical_pages(size_t page_count);
void uncommit_user_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count);
NonnullRefPtr<PhysicalPage> allocate_committed_user_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill = ShouldZeroFill::Yes);
RefPtr<PhysicalPage> allocate_user_physical_page(ShouldZeroFill = ShouldZeroFill::Yes, bool* did_purge = nullptr);
RefPtr<PhysicalPage> allocate_supervisor_physical_page();
NonnullRefPtrVector<PhysicalPage> allocate_contiguous_supervisor_physical_pages(size_t size);
void deallocate_physical_page(PhysicalAddress);
ErrorOr<NonnullOwnPtr<Region>> allocate_contiguous_kernel_region(size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
ErrorOr<NonnullOwnPtr<Region>> allocate_kernel_region(size_t, StringView name, Region::Access access, AllocationStrategy strategy = AllocationStrategy::Reserve, Region::Cacheable = Region::Cacheable::Yes);
ErrorOr<NonnullOwnPtr<Region>> allocate_kernel_region(PhysicalAddress, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
ErrorOr<NonnullOwnPtr<Region>> allocate_kernel_region_with_vmobject(VMObject&, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
ErrorOr<NonnullOwnPtr<Region>> allocate_kernel_region_with_vmobject(VirtualRange const&, VMObject&, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
struct SystemMemoryInfo {
PhysicalSize user_physical_pages { 0 };
PhysicalSize user_physical_pages_used { 0 };
PhysicalSize user_physical_pages_committed { 0 };
PhysicalSize user_physical_pages_uncommitted { 0 };
PhysicalSize super_physical_pages { 0 };
PhysicalSize super_physical_pages_used { 0 };
};
SystemMemoryInfo get_system_memory_info()
{
SpinlockLocker lock(s_mm_lock);
return m_system_memory_info;
}
template<IteratorFunction<VMObject&> Callback>
static void for_each_vmobject(Callback callback)
{
VMObject::all_instances().with([&](auto& list) {
for (auto& vmobject : list) {
if (callback(vmobject) == IterationDecision::Break)
break;
}
});
}
template<VoidFunction<VMObject&> Callback>
static void for_each_vmobject(Callback callback)
{
VMObject::all_instances().with([&](auto& list) {
for (auto& vmobject : list) {
callback(vmobject);
}
});
}
static Region* find_user_region_from_vaddr(AddressSpace&, VirtualAddress);
static Region* find_user_region_from_vaddr_no_lock(AddressSpace&, VirtualAddress);
static void validate_syscall_preconditions(AddressSpace&, RegisterState const&);
void dump_kernel_regions();
PhysicalPage& shared_zero_page() { return *m_shared_zero_page; }
PhysicalPage& lazy_committed_page() { return *m_lazy_committed_page; }
PageDirectory& kernel_page_directory() { return *m_kernel_page_directory; }
Vector<UsedMemoryRange> const& used_memory_ranges() { return m_used_memory_ranges; }
bool is_allowed_to_mmap_to_userspace(PhysicalAddress, VirtualRange const&) const;
PhysicalPageEntry& get_physical_page_entry(PhysicalAddress);
PhysicalAddress get_physical_address(PhysicalPage const&);
void copy_physical_page(PhysicalPage&, u8 page_buffer[PAGE_SIZE]);
private:
MemoryManager();
~MemoryManager();
void initialize_physical_pages();
void register_reserved_ranges();
void register_region(Region&);
void unregister_region(Region&);
void protect_kernel_image();
void parse_memory_map();
static void flush_tlb_local(VirtualAddress, size_t page_count = 1);
static void flush_tlb(PageDirectory const*, VirtualAddress, size_t page_count = 1);
static Region* kernel_region_from_vaddr(VirtualAddress);
static Region* find_region_from_vaddr(VirtualAddress);
RefPtr<PhysicalPage> find_free_user_physical_page(bool);
ALWAYS_INLINE u8* quickmap_page(PhysicalPage& page)
{
return quickmap_page(page.paddr());
}
u8* quickmap_page(PhysicalAddress const&);
void unquickmap_page();
PageDirectoryEntry* quickmap_pd(PageDirectory&, size_t pdpt_index);
PageTableEntry* quickmap_pt(PhysicalAddress);
PageTableEntry* pte(PageDirectory&, VirtualAddress);
PageTableEntry* ensure_pte(PageDirectory&, VirtualAddress);
void release_pte(PageDirectory&, VirtualAddress, bool);
RefPtr<PageDirectory> m_kernel_page_directory;
RefPtr<PhysicalPage> m_shared_zero_page;
RefPtr<PhysicalPage> m_lazy_committed_page;
SystemMemoryInfo m_system_memory_info;
NonnullOwnPtrVector<PhysicalRegion> m_user_physical_regions;
OwnPtr<PhysicalRegion> m_super_physical_region;
OwnPtr<PhysicalRegion> m_physical_pages_region;
PhysicalPageEntry* m_physical_page_entries { nullptr };
size_t m_physical_page_entries_count { 0 };
RedBlackTree<FlatPtr, Region*> m_kernel_regions;
Vector<UsedMemoryRange> m_used_memory_ranges;
Vector<PhysicalMemoryRange> m_physical_memory_ranges;
Vector<ContiguousReservedMemoryRange> m_reserved_memory_ranges;
};
inline bool is_user_address(VirtualAddress vaddr)
{
return vaddr.get() < USER_RANGE_CEILING;
}
inline bool is_user_range(VirtualAddress vaddr, size_t size)
{
if (vaddr.offset(size) < vaddr)
return false;
if (!is_user_address(vaddr))
return false;
if (size <= 1)
return true;
return is_user_address(vaddr.offset(size - 1));
}
inline bool is_user_range(VirtualRange const& range)
{
return is_user_range(range.base(), range.size());
}
inline bool PhysicalPage::is_shared_zero_page() const
{
return this == &MM.shared_zero_page();
}
inline bool PhysicalPage::is_lazy_committed_page() const
{
return this == &MM.lazy_committed_page();
}
inline ErrorOr<Memory::VirtualRange> expand_range_to_page_boundaries(FlatPtr address, size_t size)
{
if (Memory::page_round_up_would_wrap(size))
return EINVAL;
if ((address + size) < address)
return EINVAL;
if (Memory::page_round_up_would_wrap(address + size))
return EINVAL;
auto base = VirtualAddress { address }.page_base();
auto end = Memory::page_round_up(address + size);
return Memory::VirtualRange { base, end - base.get() };
}
}