ladybird/Kernel/Process.cpp
Nicholas Baron aa4d41fe2c
AK+Kernel+LibELF: Remove the need for IteratorDecision::Continue
By constraining two implementations, the compiler will select the best
fitting one. All this will require is duplicating the implementation and
simplifying for the `void` case.

This constraining also informs both the caller and compiler by passing
the callback parameter types as part of the constraint
(e.g.: `IterationFunction<int>`).

Some `for_each` functions in LibELF only take functions which return
`void`. This is a minimal correctness check, as it removes one way for a
function to incompletely do something.

There seems to be a possible idiom where inside a lambda, a `return;` is
the same as `continue;` in a for-loop.
2021-05-16 10:36:52 +01:00

751 lines
22 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Demangle.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <AK/Types.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/Arch/x86/CPU.h>
#include <Kernel/CoreDump.h>
#include <Kernel/Debug.h>
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/FileSystem/Custody.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/KBufferBuilder.h>
#include <Kernel/KSyms.h>
#include <Kernel/Module.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/StdLib.h>
#include <Kernel/TTY/TTY.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/PrivateInodeVMObject.h>
#include <Kernel/VM/SharedInodeVMObject.h>
#include <LibC/errno_numbers.h>
#include <LibC/limits.h>
namespace Kernel {
static void create_signal_trampoline();
RecursiveSpinLock g_processes_lock;
static Atomic<pid_t> next_pid;
READONLY_AFTER_INIT InlineLinkedList<Process>* g_processes;
READONLY_AFTER_INIT String* g_hostname;
READONLY_AFTER_INIT Lock* g_hostname_lock;
READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
READONLY_AFTER_INIT Region* g_signal_trampoline_region;
ProcessID Process::allocate_pid()
{
// Overflow is UB, and negative PIDs wreck havoc.
// TODO: Handle PID overflow
// For example: Use an Atomic<u32>, mask the most significant bit,
// retry if PID is already taken as a PID, taken as a TID,
// takes as a PGID, taken as a SID, or zero.
return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
}
UNMAP_AFTER_INIT void Process::initialize()
{
g_modules = new HashMap<String, OwnPtr<Module>>;
next_pid.store(0, AK::MemoryOrder::memory_order_release);
g_processes = new InlineLinkedList<Process>;
g_process_groups = new InlineLinkedList<ProcessGroup>;
g_hostname = new String("courage");
g_hostname_lock = new Lock;
create_signal_trampoline();
}
Vector<ProcessID> Process::all_pids()
{
Vector<ProcessID> pids;
ScopedSpinLock lock(g_processes_lock);
pids.ensure_capacity((int)g_processes->size_slow());
for (auto& process : *g_processes)
pids.append(process.pid());
return pids;
}
NonnullRefPtrVector<Process> Process::all_processes()
{
NonnullRefPtrVector<Process> processes;
ScopedSpinLock lock(g_processes_lock);
processes.ensure_capacity((int)g_processes->size_slow());
for (auto& process : *g_processes)
processes.append(NonnullRefPtr<Process>(process));
return processes;
}
bool Process::in_group(gid_t gid) const
{
return this->gid() == gid || extra_gids().contains_slow(gid);
}
void Process::kill_threads_except_self()
{
InterruptDisabler disabler;
if (thread_count() <= 1)
return;
auto current_thread = Thread::current();
for_each_thread([&](Thread& thread) {
if (&thread == current_thread)
return;
if (auto state = thread.state(); state == Thread::State::Dead
|| state == Thread::State::Dying)
return;
// We need to detach this thread in case it hasn't been joined
thread.detach();
thread.set_should_die();
});
big_lock().clear_waiters();
}
void Process::kill_all_threads()
{
for_each_thread([&](Thread& thread) {
// We need to detach this thread in case it hasn't been joined
thread.detach();
thread.set_should_die();
});
}
RefPtr<Process> Process::create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t uid, gid_t gid, ProcessID parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
{
auto parts = path.split('/');
if (arguments.is_empty()) {
arguments.append(parts.last());
}
RefPtr<Custody> cwd;
{
ScopedSpinLock lock(g_processes_lock);
if (auto parent = Process::from_pid(parent_pid)) {
cwd = parent->m_cwd;
}
}
if (!cwd)
cwd = VFS::the().root_custody();
auto process = Process::create(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty);
if (!first_thread)
return {};
if (!process->m_fds.try_resize(m_max_open_file_descriptors)) {
first_thread = nullptr;
return {};
}
auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
auto description = device_to_use_as_tty.open(O_RDWR).value();
process->m_fds[0].set(*description);
process->m_fds[1].set(*description);
process->m_fds[2].set(*description);
error = process->exec(path, move(arguments), move(environment));
if (error != 0) {
dbgln("Failed to exec {}: {}", path, error);
first_thread = nullptr;
return {};
}
{
ScopedSpinLock lock(g_processes_lock);
g_processes->prepend(process);
process->ref();
}
error = 0;
return process;
}
RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity)
{
auto process = Process::create(first_thread, move(name), (uid_t)0, (gid_t)0, ProcessID(0), true);
if (!first_thread || !process)
return {};
first_thread->tss().eip = (FlatPtr)entry;
first_thread->tss().esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp
if (process->pid() != 0) {
ScopedSpinLock lock(g_processes_lock);
g_processes->prepend(process);
process->ref();
}
ScopedSpinLock lock(g_scheduler_lock);
first_thread->set_affinity(affinity);
first_thread->set_state(Thread::State::Runnable);
return process;
}
void Process::protect_data()
{
MM.set_page_writable_direct(VirtualAddress { this }, false);
}
void Process::unprotect_data()
{
MM.set_page_writable_direct(VirtualAddress { this }, true);
}
RefPtr<Process> Process::create(RefPtr<Thread>& first_thread, const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
{
auto process = adopt_ref_if_nonnull(new Process(name, uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty));
if (!process)
return {};
auto result = process->attach_resources(first_thread, fork_parent);
if (result.is_error())
return {};
return process;
}
Process::Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
: m_name(move(name))
, m_is_kernel_process(is_kernel_process)
, m_executable(move(executable))
, m_cwd(move(cwd))
, m_tty(tty)
, m_wait_block_condition(*this)
{
// Ensure that we protect the process data when exiting the constructor.
ProtectedDataMutationScope scope { *this };
m_pid = allocate_pid();
m_ppid = ppid;
m_uid = uid;
m_gid = gid;
m_euid = uid;
m_egid = gid;
m_suid = uid;
m_sgid = gid;
dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
}
KResult Process::attach_resources(RefPtr<Thread>& first_thread, Process* fork_parent)
{
m_space = Space::create(*this, fork_parent ? &fork_parent->space() : nullptr);
if (!m_space)
return ENOMEM;
if (fork_parent) {
// NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
first_thread = Thread::current()->clone(*this);
if (!first_thread)
return ENOMEM;
} else {
// NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
auto thread_or_error = Thread::try_create(*this);
if (thread_or_error.is_error())
return thread_or_error.error();
first_thread = thread_or_error.release_value();
first_thread->detach();
}
return KSuccess;
}
Process::~Process()
{
unprotect_data();
VERIFY(thread_count() == 0); // all threads should have been finalized
VERIFY(!m_alarm_timer);
PerformanceManager::add_process_exit_event(*this);
{
ScopedSpinLock processes_lock(g_processes_lock);
if (prev() || next())
g_processes->remove(this);
}
}
// Make sure the compiler doesn't "optimize away" this function:
extern void signal_trampoline_dummy() __attribute__((used));
void signal_trampoline_dummy()
{
#if ARCH(I386)
// The trampoline preserves the current eax, pushes the signal code and
// then calls the signal handler. We do this because, when interrupting a
// blocking syscall, that syscall may return some special error code in eax;
// This error code would likely be overwritten by the signal handler, so it's
// necessary to preserve it here.
asm(
".intel_syntax noprefix\n"
"asm_signal_trampoline:\n"
"push ebp\n"
"mov ebp, esp\n"
"push eax\n" // we have to store eax 'cause it might be the return value from a syscall
"sub esp, 4\n" // align the stack to 16 bytes
"mov eax, [ebp+12]\n" // push the signal code
"push eax\n"
"call [ebp+8]\n" // call the signal handler
"add esp, 8\n"
"mov eax, %P0\n"
"int 0x82\n" // sigreturn syscall
"asm_signal_trampoline_end:\n"
".att_syntax" ::"i"(Syscall::SC_sigreturn));
#elif ARCH(X86_64)
asm("asm_signal_trampoline:\n"
"cli;hlt\n"
"asm_signal_trampoline_end:\n");
#endif
}
extern "C" void asm_signal_trampoline(void) __attribute__((used));
extern "C" void asm_signal_trampoline_end(void);
void create_signal_trampoline()
{
// NOTE: We leak this region.
g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Region::Access::Read | Region::Access::Write).leak_ptr();
g_signal_trampoline_region->set_syscall_region(true);
u8* trampoline = (u8*)asm_signal_trampoline;
u8* trampoline_end = (u8*)asm_signal_trampoline_end;
size_t trampoline_size = trampoline_end - trampoline;
u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
memcpy(code_ptr, trampoline, trampoline_size);
g_signal_trampoline_region->set_writable(false);
g_signal_trampoline_region->remap();
}
void Process::crash(int signal, u32 eip, bool out_of_memory)
{
VERIFY(!is_dead());
VERIFY(Process::current() == this);
if (out_of_memory) {
dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
} else {
if (eip >= 0xc0000000 && g_kernel_symbols_available) {
auto* symbol = symbolicate_kernel_address(eip);
dbgln("\033[31;1m{:p} {} +{}\033[0m\n", eip, (symbol ? demangle(symbol->name) : "(k?)"), (symbol ? eip - symbol->address : 0));
} else {
dbgln("\033[31;1m{:p} (?)\033[0m\n", eip);
}
dump_backtrace();
}
{
ProtectedDataMutationScope scope { *this };
m_termination_signal = signal;
}
set_dump_core(!out_of_memory);
space().dump_regions();
VERIFY(is_user_process());
die();
// We can not return from here, as there is nowhere
// to unwind to, so die right away.
Thread::current()->die_if_needed();
VERIFY_NOT_REACHED();
}
RefPtr<Process> Process::from_pid(ProcessID pid)
{
ScopedSpinLock lock(g_processes_lock);
for (auto& process : *g_processes) {
process.pid();
if (process.pid() == pid)
return &process;
}
return {};
}
RefPtr<FileDescription> Process::file_description(int fd) const
{
if (fd < 0)
return nullptr;
if (static_cast<size_t>(fd) < m_fds.size())
return m_fds[fd].description();
return nullptr;
}
int Process::fd_flags(int fd) const
{
if (fd < 0)
return -1;
if (static_cast<size_t>(fd) < m_fds.size())
return m_fds[fd].flags();
return -1;
}
int Process::number_of_open_file_descriptors() const
{
int count = 0;
for (auto& description : m_fds) {
if (description)
++count;
}
return count;
}
int Process::alloc_fd(int first_candidate_fd)
{
for (int i = first_candidate_fd; i < (int)m_max_open_file_descriptors; ++i) {
if (!m_fds[i])
return i;
}
return -EMFILE;
}
Time kgettimeofday()
{
return TimeManagement::now();
}
siginfo_t Process::wait_info()
{
siginfo_t siginfo {};
siginfo.si_signo = SIGCHLD;
siginfo.si_pid = pid().value();
siginfo.si_uid = uid();
if (m_termination_signal) {
siginfo.si_status = m_termination_signal;
siginfo.si_code = CLD_KILLED;
} else {
siginfo.si_status = m_termination_status;
siginfo.si_code = CLD_EXITED;
}
return siginfo;
}
Custody& Process::current_directory()
{
if (!m_cwd)
m_cwd = VFS::the().root_custody();
return *m_cwd;
}
KResultOr<String> Process::get_syscall_path_argument(const char* user_path, size_t path_length) const
{
if (path_length == 0)
return EINVAL;
if (path_length > PATH_MAX)
return ENAMETOOLONG;
auto copied_string = copy_string_from_user(user_path, path_length);
if (copied_string.is_null())
return EFAULT;
return copied_string;
}
KResultOr<String> Process::get_syscall_path_argument(const Syscall::StringArgument& path) const
{
return get_syscall_path_argument(path.characters, path.length);
}
bool Process::dump_core()
{
VERIFY(is_dumpable());
VERIFY(should_core_dump());
dbgln("Generating coredump for pid: {}", pid().value());
auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), RTC::now());
auto coredump = CoreDump::create(*this, coredump_path);
if (!coredump)
return false;
return !coredump->write().is_error();
}
bool Process::dump_perfcore()
{
VERIFY(is_dumpable());
VERIFY(m_perf_event_buffer);
dbgln("Generating perfcore for pid: {}", pid().value());
auto description_or_error = VFS::the().open(String::formatted("perfcore.{}", pid().value()), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
if (description_or_error.is_error())
return false;
auto& description = description_or_error.value();
KBufferBuilder builder;
if (!m_perf_event_buffer->to_json(builder))
return false;
auto json = builder.build();
if (!json)
return false;
auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
return !description->write(json_buffer, json->size()).is_error();
}
void Process::finalize()
{
VERIFY(Thread::current() == g_finalizer);
dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
if (is_dumpable()) {
if (m_should_dump_core)
dump_core();
if (m_perf_event_buffer)
dump_perfcore();
}
m_threads_for_coredump.clear();
if (m_alarm_timer)
TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
m_fds.clear();
m_tty = nullptr;
m_executable = nullptr;
m_cwd = nullptr;
m_root_directory = nullptr;
m_root_directory_relative_to_global_root = nullptr;
m_arguments.clear();
m_environment.clear();
m_dead = true;
{
// FIXME: PID/TID BUG
if (auto parent_thread = Thread::from_tid(ppid().value())) {
if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
parent_thread->send_signal(SIGCHLD, this);
}
}
{
ScopedSpinLock processses_lock(g_processes_lock);
if (!!ppid()) {
if (auto parent = Process::from_pid(ppid())) {
parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
}
}
}
unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
m_space->remove_all_regions({});
VERIFY(ref_count() > 0);
// WaitBlockCondition::finalize will be in charge of dropping the last
// reference if there are still waiters around, or whenever the last
// waitable states are consumed. Unless there is no parent around
// anymore, in which case we'll just drop it right away.
m_wait_block_condition.finalize();
}
void Process::disowned_by_waiter(Process& process)
{
m_wait_block_condition.disowned_by_waiter(process);
}
void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
{
if (auto parent = Process::from_pid(ppid()))
parent->m_wait_block_condition.unblock(*this, flags, signal);
}
void Process::die()
{
// Let go of the TTY, otherwise a slave PTY may keep the master PTY from
// getting an EOF when the last process using the slave PTY dies.
// If the master PTY owner relies on an EOF to know when to wait() on a
// slave owner, we have to allow the PTY pair to be torn down.
m_tty = nullptr;
for_each_thread([&](auto& thread) {
m_threads_for_coredump.append(thread);
});
{
ScopedSpinLock lock(g_processes_lock);
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (process->has_tracee_thread(pid())) {
dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process->name(), process->pid(), name(), pid());
process->stop_tracing();
auto err = process->send_signal(SIGSTOP, this);
if (err.is_error())
dbgln("Failed to send the SIGSTOP signal to {} ({})", process->name(), process->pid());
}
process = next_process;
}
}
kill_all_threads();
}
void Process::terminate_due_to_signal(u8 signal)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(signal < 32);
VERIFY(Process::current() == this);
dbgln("Terminating {} due to signal {}", *this, signal);
{
ProtectedDataMutationScope scope { *this };
m_termination_status = 0;
m_termination_signal = signal;
}
die();
}
KResult Process::send_signal(u8 signal, Process* sender)
{
// Try to send it to the "obvious" main thread:
auto receiver_thread = Thread::from_tid(pid().value());
// If the main thread has died, there may still be other threads:
if (!receiver_thread) {
// The first one should be good enough.
// Neither kill(2) nor kill(3) specify any selection precedure.
for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
receiver_thread = &thread;
return IterationDecision::Break;
});
}
if (receiver_thread) {
receiver_thread->send_signal(signal, sender);
return KSuccess;
}
return ESRCH;
}
RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, const String& name, u32 affinity, bool joinable)
{
VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
// FIXME: Do something with guard pages?
auto thread_or_error = Thread::try_create(*this);
if (thread_or_error.is_error())
return {};
auto thread = thread_or_error.release_value();
thread->set_name(name);
thread->set_affinity(affinity);
thread->set_priority(priority);
if (!joinable)
thread->detach();
auto& tss = thread->tss();
tss.eip = (FlatPtr)entry;
tss.esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp
ScopedSpinLock lock(g_scheduler_lock);
thread->set_state(Thread::State::Runnable);
return thread;
}
void Process::FileDescriptionAndFlags::clear()
{
m_description = nullptr;
m_flags = 0;
}
void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
{
m_description = move(description);
m_flags = flags;
}
Custody& Process::root_directory()
{
if (!m_root_directory)
m_root_directory = VFS::the().root_custody();
return *m_root_directory;
}
Custody& Process::root_directory_relative_to_global_root()
{
if (!m_root_directory_relative_to_global_root)
m_root_directory_relative_to_global_root = root_directory();
return *m_root_directory_relative_to_global_root;
}
void Process::set_root_directory(const Custody& root)
{
m_root_directory = root;
}
void Process::set_tty(TTY* tty)
{
m_tty = tty;
}
KResult Process::start_tracing_from(ProcessID tracer)
{
auto thread_tracer = ThreadTracer::create(tracer);
if (!thread_tracer)
return ENOMEM;
m_tracer = move(thread_tracer);
return KSuccess;
}
void Process::stop_tracing()
{
m_tracer = nullptr;
}
void Process::tracer_trap(Thread& thread, const RegisterState& regs)
{
VERIFY(m_tracer.ptr());
m_tracer->set_regs(regs);
thread.send_urgent_signal_to_self(SIGTRAP);
}
bool Process::create_perf_events_buffer_if_needed()
{
if (!m_perf_event_buffer) {
m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
}
return !!m_perf_event_buffer;
}
void Process::delete_perf_events_buffer()
{
if (m_perf_event_buffer)
m_perf_event_buffer = nullptr;
}
bool Process::remove_thread(Thread& thread)
{
ProtectedDataMutationScope scope { *this };
auto thread_cnt_before = m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
VERIFY(thread_cnt_before != 0);
ScopedSpinLock thread_list_lock(m_thread_list_lock);
m_thread_list.remove(thread);
return thread_cnt_before == 1;
}
bool Process::add_thread(Thread& thread)
{
ProtectedDataMutationScope scope { *this };
bool is_first = m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
ScopedSpinLock thread_list_lock(m_thread_list_lock);
m_thread_list.append(thread);
return is_first;
}
void Process::set_dumpable(bool dumpable)
{
if (dumpable == m_dumpable)
return;
ProtectedDataMutationScope scope { *this };
m_dumpable = dumpable;
}
void Process::set_coredump_metadata(const String& key, String value)
{
m_coredump_metadata.set(key, move(value));
}
}