ladybird/Kernel/Library/NonnullLockRefPtr.h
Tim Schumacher a2f60911fe AK: Rename GenericTraits to DefaultTraits
This feels like a more fitting name for something that provides the
default values for Traits.
2023-11-09 10:05:51 -05:00

341 lines
8.8 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Atomic.h>
#include <AK/Format.h>
#include <AK/NonnullRefPtr.h>
#include <AK/Traits.h>
#include <AK/Types.h>
#ifdef KERNEL
# include <Kernel/Arch/Processor.h>
# include <Kernel/Library/ScopedCritical.h>
#endif
#define NONNULLLOCKREFPTR_SCRUB_BYTE 0xa1
namespace AK {
template<typename T, typename PtrTraits>
class LockRefPtr;
template<typename T>
class [[nodiscard]] NonnullLockRefPtr {
template<typename U, typename P>
friend class LockRefPtr;
template<typename U>
friend class NonnullLockRefPtr;
template<typename U>
friend class LockWeakPtr;
public:
using ElementType = T;
enum AdoptTag { Adopt };
ALWAYS_INLINE NonnullLockRefPtr(T const& object)
: m_bits((FlatPtr)&object)
{
VERIFY(!(m_bits & 1));
const_cast<T&>(object).ref();
}
template<typename U>
ALWAYS_INLINE NonnullLockRefPtr(U const& object)
requires(IsConvertible<U*, T*>)
: m_bits((FlatPtr) static_cast<T const*>(&object))
{
VERIFY(!(m_bits & 1));
const_cast<T&>(static_cast<T const&>(object)).ref();
}
ALWAYS_INLINE NonnullLockRefPtr(AdoptTag, T& object)
: m_bits((FlatPtr)&object)
{
VERIFY(!(m_bits & 1));
}
ALWAYS_INLINE NonnullLockRefPtr(NonnullLockRefPtr&& other)
: m_bits((FlatPtr)&other.leak_ref())
{
VERIFY(!(m_bits & 1));
}
template<typename U>
ALWAYS_INLINE NonnullLockRefPtr(NonnullLockRefPtr<U>&& other)
requires(IsConvertible<U*, T*>)
: m_bits((FlatPtr)&other.leak_ref())
{
VERIFY(!(m_bits & 1));
}
ALWAYS_INLINE NonnullLockRefPtr(NonnullLockRefPtr const& other)
: m_bits((FlatPtr)other.add_ref())
{
VERIFY(!(m_bits & 1));
}
template<typename U>
ALWAYS_INLINE NonnullLockRefPtr(NonnullLockRefPtr<U> const& other)
requires(IsConvertible<U*, T*>)
: m_bits((FlatPtr)other.add_ref())
{
VERIFY(!(m_bits & 1));
}
ALWAYS_INLINE ~NonnullLockRefPtr()
{
assign(nullptr);
#ifdef SANITIZE_PTRS
m_bits.store(explode_byte(NONNULLLOCKREFPTR_SCRUB_BYTE), AK::MemoryOrder::memory_order_relaxed);
#endif
}
template<typename U>
NonnullLockRefPtr(OwnPtr<U> const&) = delete;
template<typename U>
NonnullLockRefPtr& operator=(OwnPtr<U> const&) = delete;
template<typename U>
NonnullLockRefPtr(LockRefPtr<U> const&) = delete;
template<typename U>
NonnullLockRefPtr& operator=(LockRefPtr<U> const&) = delete;
NonnullLockRefPtr(LockRefPtr<T> const&) = delete;
NonnullLockRefPtr& operator=(LockRefPtr<T> const&) = delete;
NonnullLockRefPtr& operator=(NonnullLockRefPtr const& other)
{
if (this != &other)
assign(other.add_ref());
return *this;
}
template<typename U>
NonnullLockRefPtr& operator=(NonnullLockRefPtr<U> const& other)
requires(IsConvertible<U*, T*>)
{
assign(other.add_ref());
return *this;
}
ALWAYS_INLINE NonnullLockRefPtr& operator=(NonnullLockRefPtr&& other)
{
if (this != &other)
assign(&other.leak_ref());
return *this;
}
template<typename U>
NonnullLockRefPtr& operator=(NonnullLockRefPtr<U>&& other)
requires(IsConvertible<U*, T*>)
{
assign(&other.leak_ref());
return *this;
}
NonnullLockRefPtr& operator=(T const& object)
{
const_cast<T&>(object).ref();
assign(const_cast<T*>(&object));
return *this;
}
[[nodiscard]] ALWAYS_INLINE T& leak_ref()
{
T* ptr = exchange(nullptr);
VERIFY(ptr);
return *ptr;
}
ALWAYS_INLINE RETURNS_NONNULL T* ptr()
{
return as_nonnull_ptr();
}
ALWAYS_INLINE RETURNS_NONNULL T const* ptr() const
{
return as_nonnull_ptr();
}
ALWAYS_INLINE RETURNS_NONNULL T* operator->()
{
return as_nonnull_ptr();
}
ALWAYS_INLINE RETURNS_NONNULL T const* operator->() const
{
return as_nonnull_ptr();
}
ALWAYS_INLINE T& operator*()
{
return *as_nonnull_ptr();
}
ALWAYS_INLINE T const& operator*() const
{
return *as_nonnull_ptr();
}
ALWAYS_INLINE RETURNS_NONNULL operator T*()
{
return as_nonnull_ptr();
}
ALWAYS_INLINE RETURNS_NONNULL operator T const*() const
{
return as_nonnull_ptr();
}
ALWAYS_INLINE operator T&()
{
return *as_nonnull_ptr();
}
ALWAYS_INLINE operator T const&() const
{
return *as_nonnull_ptr();
}
operator bool() const = delete;
bool operator!() const = delete;
void swap(NonnullLockRefPtr& other)
{
if (this == &other)
return;
// NOTE: swap is not atomic!
T* other_ptr = other.exchange(nullptr);
T* ptr = exchange(other_ptr);
other.exchange(ptr);
}
template<typename U>
void swap(NonnullLockRefPtr<U>& other)
requires(IsConvertible<U*, T*>)
{
// NOTE: swap is not atomic!
U* other_ptr = other.exchange(nullptr);
T* ptr = exchange(other_ptr);
other.exchange(ptr);
}
private:
NonnullLockRefPtr() = delete;
ALWAYS_INLINE T* as_ptr() const
{
return (T*)(m_bits.load(AK::MemoryOrder::memory_order_relaxed) & ~(FlatPtr)1);
}
ALWAYS_INLINE RETURNS_NONNULL T* as_nonnull_ptr() const
{
T* ptr = (T*)(m_bits.load(AK::MemoryOrder::memory_order_relaxed) & ~(FlatPtr)1);
VERIFY(ptr);
return ptr;
}
template<typename F>
void do_while_locked(F f) const
{
#ifdef KERNEL
// We don't want to be pre-empted while we have the lock bit set
Kernel::ScopedCritical critical;
#endif
FlatPtr bits;
for (;;) {
bits = m_bits.fetch_or(1, AK::MemoryOrder::memory_order_acq_rel);
if (!(bits & 1))
break;
#ifdef KERNEL
Kernel::Processor::wait_check();
#endif
}
VERIFY(!(bits & 1));
f((T*)bits);
m_bits.store(bits, AK::MemoryOrder::memory_order_release);
}
ALWAYS_INLINE void assign(T* new_ptr)
{
T* prev_ptr = exchange(new_ptr);
unref_if_not_null(prev_ptr);
}
ALWAYS_INLINE T* exchange(T* new_ptr)
{
VERIFY(!((FlatPtr)new_ptr & 1));
#ifdef KERNEL
// We don't want to be pre-empted while we have the lock bit set
Kernel::ScopedCritical critical;
#endif
// Only exchange while not locked
FlatPtr expected = m_bits.load(AK::MemoryOrder::memory_order_relaxed);
for (;;) {
expected &= ~(FlatPtr)1; // only if lock bit is not set
if (m_bits.compare_exchange_strong(expected, (FlatPtr)new_ptr, AK::MemoryOrder::memory_order_acq_rel))
break;
#ifdef KERNEL
Kernel::Processor::wait_check();
#endif
}
VERIFY(!(expected & 1));
return (T*)expected;
}
T* add_ref() const
{
#ifdef KERNEL
// We don't want to be pre-empted while we have the lock bit set
Kernel::ScopedCritical critical;
#endif
// Lock the pointer
FlatPtr expected = m_bits.load(AK::MemoryOrder::memory_order_relaxed);
for (;;) {
expected &= ~(FlatPtr)1; // only if lock bit is not set
if (m_bits.compare_exchange_strong(expected, expected | 1, AK::MemoryOrder::memory_order_acq_rel))
break;
#ifdef KERNEL
Kernel::Processor::wait_check();
#endif
}
// Add a reference now that we locked the pointer
ref_if_not_null((T*)expected);
// Unlock the pointer again
m_bits.store(expected, AK::MemoryOrder::memory_order_release);
return (T*)expected;
}
mutable Atomic<FlatPtr> m_bits { 0 };
};
template<typename T>
inline NonnullLockRefPtr<T> adopt_lock_ref(T& object)
{
return NonnullLockRefPtr<T>(NonnullLockRefPtr<T>::Adopt, object);
}
template<typename T>
struct Formatter<NonnullLockRefPtr<T>> : Formatter<T const*> {
ErrorOr<void> format(FormatBuilder& builder, NonnullLockRefPtr<T> const& value)
{
return Formatter<T const*>::format(builder, value.ptr());
}
};
template<typename T, typename U>
inline void swap(NonnullLockRefPtr<T>& a, NonnullLockRefPtr<U>& b)
requires(IsConvertible<U*, T*>)
{
a.swap(b);
}
}
template<typename T>
struct Traits<NonnullLockRefPtr<T>> : public DefaultTraits<NonnullLockRefPtr<T>> {
using PeekType = T*;
using ConstPeekType = T const*;
static unsigned hash(NonnullLockRefPtr<T> const& p) { return ptr_hash(p.ptr()); }
static bool equals(NonnullLockRefPtr<T> const& a, NonnullLockRefPtr<T> const& b) { return a.ptr() == b.ptr(); }
};
using AK::adopt_lock_ref;
using AK::NonnullLockRefPtr;