mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-10 13:00:29 +03:00
591 lines
19 KiB
C++
591 lines
19 KiB
C++
/*
|
|
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Concepts.h>
|
|
#include <AK/Error.h>
|
|
#include <AK/Noncopyable.h>
|
|
#include <AK/kmalloc.h>
|
|
|
|
namespace AK {
|
|
|
|
template<Integral K>
|
|
class BaseRedBlackTree {
|
|
AK_MAKE_NONCOPYABLE(BaseRedBlackTree);
|
|
AK_MAKE_NONMOVABLE(BaseRedBlackTree);
|
|
|
|
public:
|
|
[[nodiscard]] size_t size() const { return m_size; }
|
|
[[nodiscard]] bool is_empty() const { return m_size == 0; }
|
|
|
|
enum class Color : bool {
|
|
Red,
|
|
Black
|
|
};
|
|
struct Node {
|
|
Node* left_child { nullptr };
|
|
Node* right_child { nullptr };
|
|
Node* parent { nullptr };
|
|
|
|
Color color { Color::Red };
|
|
|
|
K key;
|
|
|
|
Node(K key)
|
|
: key(key)
|
|
{
|
|
}
|
|
Node()
|
|
{
|
|
}
|
|
virtual ~Node() {};
|
|
};
|
|
|
|
protected:
|
|
BaseRedBlackTree() = default; // These are protected to ensure no one instantiates the leaky base red black tree directly
|
|
virtual ~BaseRedBlackTree() = default;
|
|
|
|
void rotate_left(Node* subtree_root)
|
|
{
|
|
VERIFY(subtree_root);
|
|
auto* pivot = subtree_root->right_child;
|
|
VERIFY(pivot);
|
|
auto* parent = subtree_root->parent;
|
|
|
|
// stage 1 - subtree_root's right child is now pivot's left child
|
|
subtree_root->right_child = pivot->left_child;
|
|
if (subtree_root->right_child)
|
|
subtree_root->right_child->parent = subtree_root;
|
|
|
|
// stage 2 - pivot's left child is now subtree_root
|
|
pivot->left_child = subtree_root;
|
|
subtree_root->parent = pivot;
|
|
|
|
// stage 3 - update pivot's parent
|
|
pivot->parent = parent;
|
|
if (!parent) { // new root
|
|
m_root = pivot;
|
|
} else if (parent->left_child == subtree_root) { // we are the left child
|
|
parent->left_child = pivot;
|
|
} else { // we are the right child
|
|
parent->right_child = pivot;
|
|
}
|
|
}
|
|
|
|
void rotate_right(Node* subtree_root)
|
|
{
|
|
VERIFY(subtree_root);
|
|
auto* pivot = subtree_root->left_child;
|
|
VERIFY(pivot);
|
|
auto* parent = subtree_root->parent;
|
|
|
|
// stage 1 - subtree_root's left child is now pivot's right child
|
|
subtree_root->left_child = pivot->right_child;
|
|
if (subtree_root->left_child)
|
|
subtree_root->left_child->parent = subtree_root;
|
|
|
|
// stage 2 - pivot's right child is now subtree_root
|
|
pivot->right_child = subtree_root;
|
|
subtree_root->parent = pivot;
|
|
|
|
// stage 3 - update pivot's parent
|
|
pivot->parent = parent;
|
|
if (!parent) { // new root
|
|
m_root = pivot;
|
|
} else if (parent->left_child == subtree_root) { // we are the left child
|
|
parent->left_child = pivot;
|
|
} else { // we are the right child
|
|
parent->right_child = pivot;
|
|
}
|
|
}
|
|
|
|
static Node* find(Node* node, K key)
|
|
{
|
|
while (node && node->key != key) {
|
|
if (key < node->key) {
|
|
node = node->left_child;
|
|
} else {
|
|
node = node->right_child;
|
|
}
|
|
}
|
|
return node;
|
|
}
|
|
|
|
static Node* find_largest_not_above(Node* node, K key)
|
|
{
|
|
Node* candidate = nullptr;
|
|
while (node) {
|
|
if (key == node->key)
|
|
return node;
|
|
if (key < node->key) {
|
|
node = node->left_child;
|
|
} else {
|
|
candidate = node;
|
|
node = node->right_child;
|
|
}
|
|
}
|
|
return candidate;
|
|
}
|
|
|
|
static Node* find_smallest_not_below(Node* node, K key)
|
|
{
|
|
Node* candidate = nullptr;
|
|
while (node) {
|
|
if (node->key == key)
|
|
return node;
|
|
|
|
if (node->key <= key) {
|
|
node = node->right_child;
|
|
} else {
|
|
candidate = node;
|
|
node = node->left_child;
|
|
}
|
|
}
|
|
return candidate;
|
|
}
|
|
|
|
void insert(Node* node)
|
|
{
|
|
VERIFY(node);
|
|
Node* parent = nullptr;
|
|
Node* temp = m_root;
|
|
while (temp) {
|
|
parent = temp;
|
|
if (node->key < temp->key)
|
|
temp = temp->left_child;
|
|
else
|
|
temp = temp->right_child;
|
|
}
|
|
if (!parent) { // new root
|
|
node->color = Color::Black;
|
|
m_root = node;
|
|
m_size = 1;
|
|
m_minimum = node;
|
|
return;
|
|
}
|
|
if (node->key < parent->key) // we are the left child
|
|
parent->left_child = node;
|
|
else // we are the right child
|
|
parent->right_child = node;
|
|
node->parent = parent;
|
|
|
|
if (node->parent->parent) // no fixups to be done for a height <= 2 tree
|
|
insert_fixups(node);
|
|
|
|
m_size++;
|
|
if (m_minimum->left_child == node)
|
|
m_minimum = node;
|
|
}
|
|
|
|
void insert_fixups(Node* node)
|
|
{
|
|
VERIFY(node && node->color == Color::Red);
|
|
while (node->parent && node->parent->color == Color::Red) {
|
|
auto* grand_parent = node->parent->parent;
|
|
if (grand_parent->right_child == node->parent) {
|
|
auto* uncle = grand_parent->left_child;
|
|
if (uncle && uncle->color == Color::Red) {
|
|
node->parent->color = Color::Black;
|
|
uncle->color = Color::Black;
|
|
grand_parent->color = Color::Red;
|
|
node = grand_parent;
|
|
} else {
|
|
if (node->parent->left_child == node) {
|
|
node = node->parent;
|
|
rotate_right(node);
|
|
}
|
|
node->parent->color = Color::Black;
|
|
grand_parent->color = Color::Red;
|
|
rotate_left(grand_parent);
|
|
}
|
|
} else {
|
|
auto* uncle = grand_parent->right_child;
|
|
if (uncle && uncle->color == Color::Red) {
|
|
node->parent->color = Color::Black;
|
|
uncle->color = Color::Black;
|
|
grand_parent->color = Color::Red;
|
|
node = grand_parent;
|
|
} else {
|
|
if (node->parent->right_child == node) {
|
|
node = node->parent;
|
|
rotate_left(node);
|
|
}
|
|
node->parent->color = Color::Black;
|
|
grand_parent->color = Color::Red;
|
|
rotate_right(grand_parent);
|
|
}
|
|
}
|
|
}
|
|
m_root->color = Color::Black; // the root should always be black
|
|
}
|
|
|
|
void remove(Node* node)
|
|
{
|
|
VERIFY(node);
|
|
|
|
// special case: deleting the only node
|
|
if (m_size == 1) {
|
|
m_root = nullptr;
|
|
m_minimum = nullptr;
|
|
m_size = 0;
|
|
return;
|
|
}
|
|
|
|
if (m_minimum == node)
|
|
m_minimum = successor(node);
|
|
|
|
// removal assumes the node has 0 or 1 child, so if we have 2, relink with the successor first (by definition the successor has no left child)
|
|
// FIXME: since we dont know how a value is represented in the node, we can't simply swap the values and keys, and instead we relink the nodes
|
|
// in place, this is quite a bit more expensive, as well as much less readable, is there a better way?
|
|
if (node->left_child && node->right_child) {
|
|
auto* successor_node = successor(node); // this is always non-null as all nodes besides the maximum node have a successor, and the maximum node has no right child
|
|
auto neighbour_swap = successor_node->parent == node;
|
|
node->left_child->parent = successor_node;
|
|
if (!neighbour_swap)
|
|
node->right_child->parent = successor_node;
|
|
if (node->parent) {
|
|
if (node->parent->left_child == node) {
|
|
node->parent->left_child = successor_node;
|
|
} else {
|
|
node->parent->right_child = successor_node;
|
|
}
|
|
} else {
|
|
m_root = successor_node;
|
|
}
|
|
if (successor_node->right_child)
|
|
successor_node->right_child->parent = node;
|
|
if (neighbour_swap) {
|
|
successor_node->parent = node->parent;
|
|
node->parent = successor_node;
|
|
} else {
|
|
if (successor_node->parent) {
|
|
if (successor_node->parent->left_child == successor_node) {
|
|
successor_node->parent->left_child = node;
|
|
} else {
|
|
successor_node->parent->right_child = node;
|
|
}
|
|
} else {
|
|
m_root = node;
|
|
}
|
|
swap(node->parent, successor_node->parent);
|
|
}
|
|
swap(node->left_child, successor_node->left_child);
|
|
if (neighbour_swap) {
|
|
node->right_child = successor_node->right_child;
|
|
successor_node->right_child = node;
|
|
} else {
|
|
swap(node->right_child, successor_node->right_child);
|
|
}
|
|
swap(node->color, successor_node->color);
|
|
}
|
|
|
|
auto* child = node->left_child ?: node->right_child;
|
|
|
|
if (child)
|
|
child->parent = node->parent;
|
|
if (node->parent) {
|
|
if (node->parent->left_child == node)
|
|
node->parent->left_child = child;
|
|
else
|
|
node->parent->right_child = child;
|
|
} else {
|
|
m_root = child;
|
|
}
|
|
|
|
// if the node is red then child must be black, and just replacing the node with its child should result in a valid tree (no change to black height)
|
|
if (node->color != Color::Red)
|
|
remove_fixups(child, node->parent);
|
|
|
|
m_size--;
|
|
}
|
|
|
|
// We maintain parent as a separate argument since node might be null
|
|
void remove_fixups(Node* node, Node* parent)
|
|
{
|
|
while (node != m_root && (!node || node->color == Color::Black)) {
|
|
if (parent->left_child == node) {
|
|
auto* sibling = parent->right_child;
|
|
if (sibling->color == Color::Red) {
|
|
sibling->color = Color::Black;
|
|
parent->color = Color::Red;
|
|
rotate_left(parent);
|
|
sibling = parent->right_child;
|
|
}
|
|
if ((!sibling->left_child || sibling->left_child->color == Color::Black) && (!sibling->right_child || sibling->right_child->color == Color::Black)) {
|
|
sibling->color = Color::Red;
|
|
node = parent;
|
|
} else {
|
|
if (!sibling->right_child || sibling->right_child->color == Color::Black) {
|
|
sibling->left_child->color = Color::Black; // null check?
|
|
sibling->color = Color::Red;
|
|
rotate_right(sibling);
|
|
sibling = parent->right_child;
|
|
}
|
|
sibling->color = parent->color;
|
|
parent->color = Color::Black;
|
|
sibling->right_child->color = Color::Black; // null check?
|
|
rotate_left(parent);
|
|
node = m_root; // fixed
|
|
}
|
|
} else {
|
|
auto* sibling = parent->left_child;
|
|
if (sibling->color == Color::Red) {
|
|
sibling->color = Color::Black;
|
|
parent->color = Color::Red;
|
|
rotate_right(parent);
|
|
sibling = parent->left_child;
|
|
}
|
|
if ((!sibling->left_child || sibling->left_child->color == Color::Black) && (!sibling->right_child || sibling->right_child->color == Color::Black)) {
|
|
sibling->color = Color::Red;
|
|
node = parent;
|
|
} else {
|
|
if (!sibling->left_child || sibling->left_child->color == Color::Black) {
|
|
sibling->right_child->color = Color::Black; // null check?
|
|
sibling->color = Color::Red;
|
|
rotate_left(sibling);
|
|
sibling = parent->left_child;
|
|
}
|
|
sibling->color = parent->color;
|
|
parent->color = Color::Black;
|
|
sibling->left_child->color = Color::Black; // null check?
|
|
rotate_right(parent);
|
|
node = m_root; // fixed
|
|
}
|
|
}
|
|
parent = node->parent;
|
|
}
|
|
node->color = Color::Black; // by this point node can't be null
|
|
}
|
|
|
|
static Node* successor(Node* node)
|
|
{
|
|
VERIFY(node);
|
|
if (node->right_child) {
|
|
node = node->right_child;
|
|
while (node->left_child)
|
|
node = node->left_child;
|
|
return node;
|
|
}
|
|
auto temp = node->parent;
|
|
while (temp && node == temp->right_child) {
|
|
node = temp;
|
|
temp = temp->parent;
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
static Node* predecessor(Node* node)
|
|
{
|
|
VERIFY(node);
|
|
if (node->left_child) {
|
|
node = node->left_child;
|
|
while (node->right_child)
|
|
node = node->right_child;
|
|
return node;
|
|
}
|
|
auto temp = node->parent;
|
|
while (temp && node == temp->left_child) {
|
|
node = temp;
|
|
temp = temp->parent;
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
Node* m_root { nullptr };
|
|
size_t m_size { 0 };
|
|
Node* m_minimum { nullptr }; // maintained for O(1) begin()
|
|
};
|
|
|
|
template<typename TreeType, typename ElementType>
|
|
class RedBlackTreeIterator {
|
|
public:
|
|
RedBlackTreeIterator() = default;
|
|
bool operator!=(RedBlackTreeIterator const& other) const { return m_node != other.m_node; }
|
|
RedBlackTreeIterator& operator++()
|
|
{
|
|
if (!m_node)
|
|
return *this;
|
|
m_prev = m_node;
|
|
// the complexity is O(logn) for each successor call, but the total complexity for all elements comes out to O(n), meaning the amortized cost for a single call is O(1)
|
|
m_node = static_cast<typename TreeType::Node*>(TreeType::successor(m_node));
|
|
return *this;
|
|
}
|
|
RedBlackTreeIterator& operator--()
|
|
{
|
|
if (!m_prev)
|
|
return *this;
|
|
m_node = m_prev;
|
|
m_prev = static_cast<typename TreeType::Node*>(TreeType::predecessor(m_prev));
|
|
return *this;
|
|
}
|
|
ElementType& operator*() { return m_node->value; }
|
|
ElementType* operator->() { return &m_node->value; }
|
|
[[nodiscard]] bool is_end() const { return !m_node; }
|
|
[[nodiscard]] bool is_begin() const { return !m_prev; }
|
|
|
|
[[nodiscard]] auto key() const { return m_node->key; }
|
|
|
|
private:
|
|
friend TreeType;
|
|
explicit RedBlackTreeIterator(typename TreeType::Node* node, typename TreeType::Node* prev = nullptr)
|
|
: m_node(node)
|
|
, m_prev(prev)
|
|
{
|
|
}
|
|
typename TreeType::Node* m_node { nullptr };
|
|
typename TreeType::Node* m_prev { nullptr };
|
|
};
|
|
|
|
template<Integral K, typename V>
|
|
class RedBlackTree final : public BaseRedBlackTree<K> {
|
|
public:
|
|
RedBlackTree() = default;
|
|
virtual ~RedBlackTree() override
|
|
{
|
|
clear();
|
|
}
|
|
|
|
using BaseTree = BaseRedBlackTree<K>;
|
|
|
|
[[nodiscard]] V* find(K key)
|
|
{
|
|
auto* node = static_cast<Node*>(BaseTree::find(this->m_root, key));
|
|
if (!node)
|
|
return nullptr;
|
|
return &node->value;
|
|
}
|
|
|
|
[[nodiscard]] V* find_largest_not_above(K key)
|
|
{
|
|
auto* node = static_cast<Node*>(BaseTree::find_largest_not_above(this->m_root, key));
|
|
if (!node)
|
|
return nullptr;
|
|
return &node->value;
|
|
}
|
|
|
|
[[nodiscard]] V* find_smallest_not_below(K key)
|
|
{
|
|
auto* node = static_cast<Node*>(BaseTree::find_smallest_not_below(this->m_root, key));
|
|
if (!node)
|
|
return nullptr;
|
|
return &node->value;
|
|
}
|
|
|
|
ErrorOr<void> try_insert(K key, V const& value)
|
|
{
|
|
return try_insert(key, V(value));
|
|
}
|
|
|
|
void insert(K key, V const& value)
|
|
{
|
|
MUST(try_insert(key, value));
|
|
}
|
|
|
|
ErrorOr<void> try_insert(K key, V&& value)
|
|
{
|
|
auto* node = new (nothrow) Node(key, move(value));
|
|
if (!node)
|
|
return Error::from_errno(ENOMEM);
|
|
BaseTree::insert(node);
|
|
return {};
|
|
}
|
|
|
|
void insert(K key, V&& value)
|
|
{
|
|
MUST(try_insert(key, move(value)));
|
|
}
|
|
|
|
using Iterator = RedBlackTreeIterator<RedBlackTree, V>;
|
|
friend Iterator;
|
|
Iterator begin() { return Iterator(static_cast<Node*>(this->m_minimum)); }
|
|
Iterator end() { return {}; }
|
|
Iterator begin_from(K key) { return Iterator(static_cast<Node*>(BaseTree::find(this->m_root, key))); }
|
|
|
|
using ConstIterator = RedBlackTreeIterator<const RedBlackTree, const V>;
|
|
friend ConstIterator;
|
|
ConstIterator begin() const { return ConstIterator(static_cast<Node*>(this->m_minimum)); }
|
|
ConstIterator end() const { return {}; }
|
|
ConstIterator begin_from(K key) const { return ConstIterator(static_cast<Node*>(BaseTree::find(this->m_root, key))); }
|
|
|
|
ConstIterator find_largest_not_above_iterator(K key) const
|
|
{
|
|
auto node = static_cast<Node*>(BaseTree::find_largest_not_above(this->m_root, key));
|
|
if (!node)
|
|
return end();
|
|
return ConstIterator(node, static_cast<Node*>(BaseTree::predecessor(node)));
|
|
}
|
|
|
|
ConstIterator find_smallest_not_below_iterator(K key) const
|
|
{
|
|
auto node = static_cast<Node*>(BaseTree::find_smallest_not_below(this->m_root, key));
|
|
if (!node)
|
|
return end();
|
|
return ConstIterator(node, static_cast<Node*>(BaseTree::predecessor(node)));
|
|
}
|
|
|
|
V unsafe_remove(K key)
|
|
{
|
|
auto* node = BaseTree::find(this->m_root, key);
|
|
VERIFY(node);
|
|
|
|
BaseTree::remove(node);
|
|
|
|
V temp = move(static_cast<Node*>(node)->value);
|
|
|
|
node->right_child = nullptr;
|
|
node->left_child = nullptr;
|
|
delete node;
|
|
|
|
return temp;
|
|
}
|
|
|
|
bool remove(K key)
|
|
{
|
|
auto* node = BaseTree::find(this->m_root, key);
|
|
if (!node)
|
|
return false;
|
|
|
|
BaseTree::remove(node);
|
|
|
|
node->right_child = nullptr;
|
|
node->left_child = nullptr;
|
|
delete node;
|
|
|
|
return true;
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
delete this->m_root;
|
|
this->m_root = nullptr;
|
|
this->m_minimum = nullptr;
|
|
this->m_size = 0;
|
|
}
|
|
|
|
private:
|
|
struct Node : BaseRedBlackTree<K>::Node {
|
|
|
|
V value;
|
|
|
|
Node(K key, V value)
|
|
: BaseRedBlackTree<K>::Node(key)
|
|
, value(move(value))
|
|
{
|
|
}
|
|
|
|
~Node()
|
|
{
|
|
delete this->left_child;
|
|
delete this->right_child;
|
|
}
|
|
};
|
|
};
|
|
|
|
}
|
|
|
|
using AK::RedBlackTree;
|