ladybird/Userland/Libraries/LibSQL/BTreeIterator.cpp
2023-04-23 18:08:17 -04:00

248 lines
8.3 KiB
C++

/*
* Copyright (c) 2021, Jan de Visser <jan@de-visser.net>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibSQL/BTree.h>
namespace SQL {
BTreeIterator::BTreeIterator(TreeNode* node, int index)
: m_current(node)
, m_index(index)
{
if (!node) {
m_where = Where::End;
} else {
if (index < 0) {
while (!node->is_leaf() && (node->size() != 0)) {
node = node->down_node(0);
}
if (node->size() == 0) {
m_where = Where::End;
m_current = nullptr;
m_index = -1;
} else {
m_where = Where::Valid;
m_current = node;
m_index = 0;
}
} else {
VERIFY(m_index < (int)m_current->size());
}
}
}
int BTreeIterator::cmp(BTreeIterator const& other) const
{
if (is_end())
return (other.is_end()) ? 0 : 1;
if (other.is_end())
return -1;
VERIFY(&other.m_current->tree() == &m_current->tree());
VERIFY((m_current->size() > 0) && (other.m_current->size() > 0));
if (&m_current != &other.m_current)
return (*m_current)[m_current->size() - 1].compare((*(other.m_current))[0]);
return (*m_current)[m_index].compare((*(other.m_current))[other.m_index]);
}
int BTreeIterator::cmp(Key const& other) const
{
if (is_end())
return 1;
if (other.is_null())
return -1;
return key().compare(other);
}
BTreeIterator BTreeIterator::next() const
{
if (is_end())
return end();
auto ix = m_index;
auto node = m_current;
if (ix < (int)(node->size() - 1)) {
if (node->is_leaf()) {
// We're in the middle of a leaf node. Next entry is
// is the next entry of the node:
return BTreeIterator(node, ix + 1);
} else {
/*
* We're in the middle of a non-leaf node. The iterator's
* next value is all the way down to the right, first entry.
*
* |
* +--+--+--+--+
* | |##| | |
* +--+--+--+--+
* / | | | \
* |
* +--+--+--+--+
* | | | | |
* +--+--+--+--+
* /
* +--+--+--+--+
* |++| | | |
* +--+--+--+--+
*/
ix++;
while (!node->is_leaf()) {
node = node->down_node(ix);
ix = 0;
}
}
VERIFY(node->is_leaf() && (ix < (int)node->size()));
return BTreeIterator(node, ix);
}
if (node->is_leaf()) {
// We currently at the last entry of a leaf node. We need to check
// one or more levels up until we end up in the "middle" of a node.
// If one level up we're still at the end of the node, we need
// to keep going up until we hit the root node. If we're at the
// end of the root node, we reached the end of the btree.
for (auto up = node->up(); up; up = node->up()) {
for (size_t i = 0; i < up->size(); i++) {
// One level up, try to find the entry with the current
// node's pointer as the left pointer:
if (up->down_pointer(i) == node->block_index())
// Found it. This is the iterator's next value:
return BTreeIterator(up, (int)i);
}
// We didn't find the m_current's pointer as a left node. So
// it must be the right node all the way at the end and we need
// to go one more level up:
node = up;
}
// We reached the root node and we're still at the end of the node.
// That means we're at the end of the btree.
return end();
}
// If we're at the end of a non-leaf node, we need to follow the
// right pointer down until we find a leaf:
TreeNode* down;
for (down = node->down_node(node->size()); !down->is_leaf(); down = down->down_node(0))
;
return BTreeIterator(down, 0);
}
// FIXME Reverse iterating doesn't quite work; we don't recognize the
// end (which is really the beginning) of the tree.
BTreeIterator BTreeIterator::previous() const
{
if (is_end())
return end();
auto node = m_current;
auto ix = m_index;
if (ix > 0) {
if (node->is_leaf()) {
// We're in the middle of a leaf node. Previous entry is
// is the previous entry of the node:
return BTreeIterator(node, ix - 1);
} else {
/*
* We're in the middle of a non-leaf node. The iterator's
* previous value is all the way down to the left, last entry.
*
* |
* +--+--+--+--+
* | | |##| |
* +--+--+--+--+
* / | | | \
* |
* +--+--+--+--+
* | | | | |
* +--+--+--+--+
* \
* +--+--+--+--+
* | | | |++|
* +--+--+--+--+
*/
while (!node->is_leaf()) {
node = node->down_node(ix);
ix = (int)node->size();
}
}
VERIFY(node->is_leaf() && (ix <= (int)node->size()));
return BTreeIterator(node, ix);
}
if (node->is_leaf()) {
// We currently at the first entry of a leaf node. We need to check one
// or more levels up until we end up in the "middle" of a node.
// If one level up we're still at the start of the node, we need
// to keep going up until we hit the root node. If we're at the
// start of the root node, we reached the start of the btree.
auto stash_current = node;
for (auto up = node->up(); up; up = node->up()) {
for (size_t i = up->size(); i > 0; i--) {
// One level up, try to find the entry with the current
// node's pointer as the right pointer:
if (up->down_pointer(i) == node->block_index()) {
// Found it. This is the iterator's next value:
node = up;
ix = (int)i - 1;
return BTreeIterator(node, ix);
}
}
// We didn't find the m_current's pointer as a right node. So
// it must be the left node all the way at the start and we need
// to go one more level up:
node = up;
}
// We reached the root node and we're still at the start of the node.
// That means we're at the start of the btree.
return BTreeIterator(stash_current, 0);
}
// If we're at the start of a non-leaf node, we need to follow the
// left pointer down until we find a leaf:
TreeNode* down = node->down_node(0);
while (!down->is_leaf())
down = down->down_node(down->size());
return BTreeIterator(down, down->size() - 1);
}
Key BTreeIterator::key() const
{
if (is_end())
return {};
return (*m_current)[m_index];
}
bool BTreeIterator::update(Key const& new_value)
{
if (is_end())
return false;
if ((cmp(new_value) == 0) && (key().block_index() == new_value.block_index()))
return true;
auto previous_iter = previous();
auto next_iter = next();
if (!m_current->tree().duplicates_allowed() && ((previous_iter == new_value) || (next_iter == new_value))) {
return false;
}
if ((previous_iter > new_value) || (next_iter < new_value))
return false;
// We are friend of BTree and TreeNode. Don't know how I feel about that.
m_current->m_entries[m_index] = new_value;
m_current->tree().serializer().serialize_and_write(*m_current);
return true;
}
BTreeIterator& BTreeIterator::operator=(BTreeIterator const& other)
{
if (&other != this) {
m_current = other.m_current;
m_index = other.m_index;
m_where = other.m_where;
}
return *this;
}
}