ladybird/Kernel/Process.h
Andreas Kling 856f20f91f Kernel: Add try_copy_kstring_from_user()
This is a convenience function that works the same as our old
copy_string_from_user(), but this returns a KString (and can fail!)
2021-05-28 09:37:09 +02:00

829 lines
33 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Checked.h>
#include <AK/Concepts.h>
#include <AK/HashMap.h>
#include <AK/InlineLinkedList.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/String.h>
#include <AK/Userspace.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/FileSystem/InodeMetadata.h>
#include <Kernel/Forward.h>
#include <Kernel/FutexQueue.h>
#include <Kernel/Lock.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/ProcessGroup.h>
#include <Kernel/StdLib.h>
#include <Kernel/Thread.h>
#include <Kernel/ThreadTracer.h>
#include <Kernel/UnixTypes.h>
#include <Kernel/UnveilNode.h>
#include <Kernel/VM/AllocationStrategy.h>
#include <Kernel/VM/RangeAllocator.h>
#include <Kernel/VM/Space.h>
#include <LibC/elf.h>
#include <LibC/signal_numbers.h>
namespace Kernel {
Time kgettimeofday();
#define ENUMERATE_PLEDGE_PROMISES \
__ENUMERATE_PLEDGE_PROMISE(stdio) \
__ENUMERATE_PLEDGE_PROMISE(rpath) \
__ENUMERATE_PLEDGE_PROMISE(wpath) \
__ENUMERATE_PLEDGE_PROMISE(cpath) \
__ENUMERATE_PLEDGE_PROMISE(dpath) \
__ENUMERATE_PLEDGE_PROMISE(inet) \
__ENUMERATE_PLEDGE_PROMISE(id) \
__ENUMERATE_PLEDGE_PROMISE(proc) \
__ENUMERATE_PLEDGE_PROMISE(ptrace) \
__ENUMERATE_PLEDGE_PROMISE(exec) \
__ENUMERATE_PLEDGE_PROMISE(unix) \
__ENUMERATE_PLEDGE_PROMISE(recvfd) \
__ENUMERATE_PLEDGE_PROMISE(sendfd) \
__ENUMERATE_PLEDGE_PROMISE(fattr) \
__ENUMERATE_PLEDGE_PROMISE(tty) \
__ENUMERATE_PLEDGE_PROMISE(chown) \
__ENUMERATE_PLEDGE_PROMISE(chroot) \
__ENUMERATE_PLEDGE_PROMISE(thread) \
__ENUMERATE_PLEDGE_PROMISE(video) \
__ENUMERATE_PLEDGE_PROMISE(accept) \
__ENUMERATE_PLEDGE_PROMISE(settime) \
__ENUMERATE_PLEDGE_PROMISE(sigaction) \
__ENUMERATE_PLEDGE_PROMISE(setkeymap) \
__ENUMERATE_PLEDGE_PROMISE(prot_exec) \
__ENUMERATE_PLEDGE_PROMISE(map_fixed) \
__ENUMERATE_PLEDGE_PROMISE(getkeymap)
enum class Pledge : u32 {
#define __ENUMERATE_PLEDGE_PROMISE(x) x,
ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
};
enum class VeilState {
None,
Dropped,
Locked,
};
typedef HashMap<FlatPtr, RefPtr<FutexQueue>> FutexQueues;
struct LoadResult;
class ProtectedProcessBase {
protected:
ProcessID m_pid { 0 };
ProcessID m_ppid { 0 };
SessionID m_sid { 0 };
uid_t m_euid { 0 };
gid_t m_egid { 0 };
uid_t m_uid { 0 };
gid_t m_gid { 0 };
uid_t m_suid { 0 };
gid_t m_sgid { 0 };
Vector<gid_t> m_extra_gids;
bool m_dumpable { false };
bool m_has_promises { false };
u32 m_promises { 0 };
bool m_has_execpromises { false };
u32 m_execpromises { 0 };
mode_t m_umask { 022 };
VirtualAddress m_signal_trampoline;
Atomic<u32> m_thread_count { 0 };
IntrusiveList<Thread, RawPtr<Thread>, &Thread::m_process_thread_list_node> m_thread_list;
u8 m_termination_status { 0 };
u8 m_termination_signal { 0 };
};
class ProcessBase : public ProtectedProcessBase {
protected:
u8 m_process_base_padding[PAGE_SIZE - sizeof(ProtectedProcessBase)];
};
static_assert(sizeof(ProcessBase) == PAGE_SIZE);
class Process
: public ProcessBase
, public RefCounted<Process>
, public InlineLinkedListNode<Process>
, public Weakable<Process> {
AK_MAKE_NONCOPYABLE(Process);
AK_MAKE_NONMOVABLE(Process);
MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);
friend class InlineLinkedListNode<Process>;
friend class Thread;
friend class CoreDump;
// Helper class to temporarily unprotect a process's protected data so you can write to it.
class ProtectedDataMutationScope {
public:
explicit ProtectedDataMutationScope(Process& process)
: m_process(process)
{
m_process.unprotect_data();
}
~ProtectedDataMutationScope() { m_process.protect_data(); }
private:
Process& m_process;
};
public:
inline static Process* current()
{
auto current_thread = Processor::current_thread();
return current_thread ? &current_thread->process() : nullptr;
}
template<typename EntryFunction>
static void kernel_process_trampoline(void* data)
{
EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
(*func)();
delete func;
}
template<typename EntryFunction>
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT)
{
auto* entry_func = new EntryFunction(move(entry));
return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity);
}
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT);
static RefPtr<Process> create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t, gid_t, ProcessID ppid, int& error, Vector<String>&& arguments = Vector<String>(), Vector<String>&& environment = Vector<String>(), TTY* = nullptr);
~Process();
static Vector<ProcessID> all_pids();
static NonnullRefPtrVector<Process> all_processes();
template<typename EntryFunction>
RefPtr<Thread> create_kernel_thread(EntryFunction entry, u32 priority, const String& name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true)
{
auto* entry_func = new EntryFunction(move(entry));
return create_kernel_thread([](void* data) {
EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
(*func)();
delete func;
},
priority, name, affinity, joinable);
}
RefPtr<Thread> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, const String& name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
bool is_profiling() const { return m_profiling; }
void set_profiling(bool profiling) { m_profiling = profiling; }
bool should_core_dump() const { return m_should_dump_core; }
void set_dump_core(bool dump_core) { m_should_dump_core = dump_core; }
bool is_dead() const { return m_dead; }
bool is_stopped() const { return m_is_stopped; }
bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }
bool is_kernel_process() const { return m_is_kernel_process; }
bool is_user_process() const { return !m_is_kernel_process; }
static RefPtr<Process> from_pid(ProcessID);
static SessionID get_sid_from_pgid(ProcessGroupID pgid);
const String& name() const { return m_name; }
ProcessID pid() const { return m_pid; }
SessionID sid() const { return m_sid; }
bool is_session_leader() const { return m_sid.value() == m_pid.value(); }
ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
bool is_group_leader() const { return pgid().value() == m_pid.value(); }
const Vector<gid_t>& extra_gids() const { return m_extra_gids; }
uid_t euid() const { return m_euid; }
gid_t egid() const { return m_egid; }
uid_t uid() const { return m_uid; }
gid_t gid() const { return m_gid; }
uid_t suid() const { return m_suid; }
gid_t sgid() const { return m_sgid; }
ProcessID ppid() const { return m_ppid; }
bool is_dumpable() const { return m_dumpable; }
void set_dumpable(bool);
mode_t umask() const { return m_umask; }
bool in_group(gid_t) const;
RefPtr<FileDescription> file_description(int fd) const;
int fd_flags(int fd) const;
// Breakable iteration functions
template<IteratorFunction<Process&> Callback>
static void for_each(Callback);
template<IteratorFunction<Process&> Callback>
static void for_each_in_pgrp(ProcessGroupID, Callback);
template<IteratorFunction<Process&> Callback>
void for_each_child(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
// Non-breakable iteration functions
template<VoidFunction<Process&> Callback>
static void for_each(Callback);
template<VoidFunction<Process&> Callback>
static void for_each_in_pgrp(ProcessGroupID, Callback);
template<VoidFunction<Process&> Callback>
void for_each_child(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
void die();
void finalize();
ThreadTracer* tracer() { return m_tracer.ptr(); }
bool is_traced() const { return !!m_tracer; }
KResult start_tracing_from(ProcessID tracer);
void stop_tracing();
void tracer_trap(Thread&, const RegisterState&);
KResultOr<int> sys$emuctl();
KResultOr<int> sys$yield();
KResultOr<int> sys$sync();
KResultOr<int> sys$beep();
KResultOr<int> sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
KResultOr<int> sys$set_process_name(Userspace<const char*> user_name, size_t user_name_length);
KResultOr<int> sys$create_inode_watcher(u32 flags);
KResultOr<int> sys$inode_watcher_add_watch(Userspace<const Syscall::SC_inode_watcher_add_watch_params*> user_params);
KResultOr<int> sys$inode_watcher_remove_watch(int fd, int wd);
KResultOr<int> sys$dbgputch(u8);
KResultOr<size_t> sys$dbgputstr(Userspace<const u8*>, int length);
KResultOr<int> sys$dump_backtrace();
KResultOr<pid_t> sys$gettid();
KResultOr<int> sys$donate(pid_t tid);
KResultOr<pid_t> sys$setsid();
KResultOr<pid_t> sys$getsid(pid_t);
KResultOr<int> sys$setpgid(pid_t pid, pid_t pgid);
KResultOr<pid_t> sys$getpgrp();
KResultOr<pid_t> sys$getpgid(pid_t);
KResultOr<uid_t> sys$getuid();
KResultOr<gid_t> sys$getgid();
KResultOr<uid_t> sys$geteuid();
KResultOr<gid_t> sys$getegid();
KResultOr<pid_t> sys$getpid();
KResultOr<pid_t> sys$getppid();
KResultOr<int> sys$getresuid(Userspace<uid_t*>, Userspace<uid_t*>, Userspace<uid_t*>);
KResultOr<int> sys$getresgid(Userspace<gid_t*>, Userspace<gid_t*>, Userspace<gid_t*>);
KResultOr<mode_t> sys$umask(mode_t);
KResultOr<int> sys$open(Userspace<const Syscall::SC_open_params*>);
KResultOr<int> sys$close(int fd);
KResultOr<ssize_t> sys$read(int fd, Userspace<u8*>, ssize_t);
KResultOr<ssize_t> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
KResultOr<ssize_t> sys$write(int fd, Userspace<const u8*>, ssize_t);
KResultOr<ssize_t> sys$writev(int fd, Userspace<const struct iovec*> iov, int iov_count);
KResultOr<int> sys$fstat(int fd, Userspace<stat*>);
KResultOr<int> sys$stat(Userspace<const Syscall::SC_stat_params*>);
KResultOr<int> sys$lseek(int fd, Userspace<off_t*>, int whence);
KResultOr<int> sys$ftruncate(int fd, Userspace<off_t*>);
KResultOr<int> sys$kill(pid_t pid_or_pgid, int sig);
[[noreturn]] void sys$exit(int status);
KResultOr<int> sys$sigreturn(RegisterState& registers);
KResultOr<pid_t> sys$waitid(Userspace<const Syscall::SC_waitid_params*>);
KResultOr<FlatPtr> sys$mmap(Userspace<const Syscall::SC_mmap_params*>);
KResultOr<FlatPtr> sys$mremap(Userspace<const Syscall::SC_mremap_params*>);
KResultOr<int> sys$munmap(Userspace<void*>, size_t);
KResultOr<int> sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*>);
KResultOr<int> sys$mprotect(Userspace<void*>, size_t, int prot);
KResultOr<int> sys$madvise(Userspace<void*>, size_t, int advice);
KResultOr<int> sys$msyscall(Userspace<void*>);
KResultOr<int> sys$purge(int mode);
KResultOr<int> sys$select(Userspace<const Syscall::SC_select_params*>);
KResultOr<int> sys$poll(Userspace<const Syscall::SC_poll_params*>);
KResultOr<ssize_t> sys$get_dir_entries(int fd, Userspace<void*>, ssize_t);
KResultOr<int> sys$getcwd(Userspace<char*>, size_t);
KResultOr<int> sys$chdir(Userspace<const char*>, size_t);
KResultOr<int> sys$fchdir(int fd);
KResultOr<int> sys$adjtime(Userspace<const timeval*>, Userspace<timeval*>);
KResultOr<int> sys$gettimeofday(Userspace<timeval*>);
KResultOr<int> sys$clock_gettime(clockid_t, Userspace<timespec*>);
KResultOr<int> sys$clock_settime(clockid_t, Userspace<const timespec*>);
KResultOr<int> sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_params*>);
KResultOr<int> sys$gethostname(Userspace<char*>, ssize_t);
KResultOr<int> sys$sethostname(Userspace<const char*>, ssize_t);
KResultOr<int> sys$uname(Userspace<utsname*>);
KResultOr<int> sys$readlink(Userspace<const Syscall::SC_readlink_params*>);
KResultOr<int> sys$ttyname(int fd, Userspace<char*>, size_t);
KResultOr<int> sys$ptsname(int fd, Userspace<char*>, size_t);
KResultOr<pid_t> sys$fork(RegisterState&);
KResultOr<int> sys$execve(Userspace<const Syscall::SC_execve_params*>);
KResultOr<int> sys$dup2(int old_fd, int new_fd);
KResultOr<int> sys$sigaction(int signum, Userspace<const sigaction*> act, Userspace<sigaction*> old_act);
KResultOr<int> sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set);
KResultOr<int> sys$sigpending(Userspace<sigset_t*>);
KResultOr<int> sys$getgroups(ssize_t, Userspace<gid_t*>);
KResultOr<int> sys$setgroups(ssize_t, Userspace<const gid_t*>);
KResultOr<int> sys$pipe(int pipefd[2], int flags);
KResultOr<int> sys$killpg(pid_t pgrp, int sig);
KResultOr<int> sys$seteuid(uid_t);
KResultOr<int> sys$setegid(gid_t);
KResultOr<int> sys$setuid(uid_t);
KResultOr<int> sys$setgid(gid_t);
KResultOr<int> sys$setreuid(uid_t, uid_t);
KResultOr<int> sys$setresuid(uid_t, uid_t, uid_t);
KResultOr<int> sys$setresgid(gid_t, gid_t, gid_t);
KResultOr<unsigned> sys$alarm(unsigned seconds);
KResultOr<int> sys$access(Userspace<const char*> pathname, size_t path_length, int mode);
KResultOr<int> sys$fcntl(int fd, int cmd, u32 extra_arg);
KResultOr<int> sys$ioctl(int fd, unsigned request, FlatPtr arg);
KResultOr<int> sys$mkdir(Userspace<const char*> pathname, size_t path_length, mode_t mode);
KResultOr<clock_t> sys$times(Userspace<tms*>);
KResultOr<int> sys$utime(Userspace<const char*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
KResultOr<int> sys$link(Userspace<const Syscall::SC_link_params*>);
KResultOr<int> sys$unlink(Userspace<const char*> pathname, size_t path_length);
KResultOr<int> sys$symlink(Userspace<const Syscall::SC_symlink_params*>);
KResultOr<int> sys$rmdir(Userspace<const char*> pathname, size_t path_length);
KResultOr<int> sys$mount(Userspace<const Syscall::SC_mount_params*>);
KResultOr<int> sys$umount(Userspace<const char*> mountpoint, size_t mountpoint_length);
KResultOr<int> sys$chmod(Userspace<const char*> pathname, size_t path_length, mode_t);
KResultOr<int> sys$fchmod(int fd, mode_t);
KResultOr<int> sys$chown(Userspace<const Syscall::SC_chown_params*>);
KResultOr<int> sys$fchown(int fd, uid_t, gid_t);
KResultOr<int> sys$socket(int domain, int type, int protocol);
KResultOr<int> sys$bind(int sockfd, Userspace<const sockaddr*> addr, socklen_t);
KResultOr<int> sys$listen(int sockfd, int backlog);
KResultOr<int> sys$accept4(Userspace<const Syscall::SC_accept4_params*>);
KResultOr<int> sys$connect(int sockfd, Userspace<const sockaddr*>, socklen_t);
KResultOr<int> sys$shutdown(int sockfd, int how);
KResultOr<ssize_t> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
KResultOr<ssize_t> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
KResultOr<int> sys$getsockopt(Userspace<const Syscall::SC_getsockopt_params*>);
KResultOr<int> sys$setsockopt(Userspace<const Syscall::SC_setsockopt_params*>);
KResultOr<int> sys$getsockname(Userspace<const Syscall::SC_getsockname_params*>);
KResultOr<int> sys$getpeername(Userspace<const Syscall::SC_getpeername_params*>);
KResultOr<int> sys$socketpair(Userspace<const Syscall::SC_socketpair_params*>);
KResultOr<int> sys$sched_setparam(pid_t pid, Userspace<const struct sched_param*>);
KResultOr<int> sys$sched_getparam(pid_t pid, Userspace<struct sched_param*>);
KResultOr<int> sys$create_thread(void* (*)(void*), Userspace<const Syscall::SC_create_thread_params*>);
[[noreturn]] void sys$exit_thread(Userspace<void*>);
KResultOr<int> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
KResultOr<int> sys$detach_thread(pid_t tid);
KResultOr<int> sys$set_thread_name(pid_t tid, Userspace<const char*> buffer, size_t buffer_size);
KResultOr<int> sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
KResultOr<int> sys$rename(Userspace<const Syscall::SC_rename_params*>);
KResultOr<int> sys$mknod(Userspace<const Syscall::SC_mknod_params*>);
KResultOr<int> sys$halt();
KResultOr<int> sys$reboot();
KResultOr<int> sys$realpath(Userspace<const Syscall::SC_realpath_params*>);
KResultOr<size_t> sys$getrandom(Userspace<void*>, size_t, unsigned int);
KResultOr<int> sys$getkeymap(Userspace<const Syscall::SC_getkeymap_params*>);
KResultOr<int> sys$setkeymap(Userspace<const Syscall::SC_setkeymap_params*>);
KResultOr<int> sys$module_load(Userspace<const char*> path, size_t path_length);
KResultOr<int> sys$module_unload(Userspace<const char*> name, size_t name_length);
KResultOr<int> sys$profiling_enable(pid_t, u64);
KResultOr<int> sys$profiling_disable(pid_t);
KResultOr<int> sys$profiling_free_buffer(pid_t);
KResultOr<int> sys$futex(Userspace<const Syscall::SC_futex_params*>);
KResultOr<int> sys$chroot(Userspace<const char*> path, size_t path_length, int mount_flags);
KResultOr<int> sys$pledge(Userspace<const Syscall::SC_pledge_params*>);
KResultOr<int> sys$unveil(Userspace<const Syscall::SC_unveil_params*>);
KResultOr<int> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
KResultOr<int> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
KResultOr<int> sys$ptrace(Userspace<const Syscall::SC_ptrace_params*>);
KResultOr<int> sys$sendfd(int sockfd, int fd);
KResultOr<int> sys$recvfd(int sockfd, int options);
KResultOr<long> sys$sysconf(int name);
KResultOr<int> sys$disown(ProcessID);
KResultOr<FlatPtr> sys$allocate_tls(Userspace<const char*> initial_data, size_t);
KResultOr<int> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2);
KResultOr<int> sys$set_coredump_metadata(Userspace<const Syscall::SC_set_coredump_metadata_params*>);
KResultOr<int> sys$anon_create(size_t, int options);
KResultOr<int> sys$statvfs(Userspace<const Syscall::SC_statvfs_params*> user_params);
KResultOr<int> sys$fstatvfs(int fd, statvfs* buf);
template<bool sockname, typename Params>
int get_sock_or_peer_name(const Params&);
static void initialize();
[[noreturn]] void crash(int signal, u32 eip, bool out_of_memory = false);
[[nodiscard]] siginfo_t wait_info();
const TTY* tty() const { return m_tty; }
void set_tty(TTY*);
u32 m_ticks_in_user { 0 };
u32 m_ticks_in_kernel { 0 };
u32 m_ticks_in_user_for_dead_children { 0 };
u32 m_ticks_in_kernel_for_dead_children { 0 };
Custody& current_directory();
Custody* executable() { return m_executable.ptr(); }
const Custody* executable() const { return m_executable.ptr(); }
const Vector<String>& arguments() const { return m_arguments; };
const Vector<String>& environment() const { return m_environment; };
int number_of_open_file_descriptors() const;
int max_open_file_descriptors() const
{
return m_max_open_file_descriptors;
}
KResult exec(String path, Vector<String> arguments, Vector<String> environment, int recusion_depth = 0);
KResultOr<LoadResult> load(NonnullRefPtr<FileDescription> main_program_description, RefPtr<FileDescription> interpreter_description, const Elf32_Ehdr& main_program_header);
bool is_superuser() const { return euid() == 0; }
void terminate_due_to_signal(u8 signal);
KResult send_signal(u8 signal, Process* sender);
u8 termination_signal() const { return m_termination_signal; }
u16 thread_count() const
{
return m_thread_count.load(AK::MemoryOrder::memory_order_relaxed);
}
Lock& big_lock() { return m_big_lock; }
Lock& ptrace_lock() { return m_ptrace_lock; }
Custody& root_directory();
Custody& root_directory_relative_to_global_root();
void set_root_directory(const Custody&);
bool has_promises() const { return m_has_promises; }
bool has_promised(Pledge pledge) const { return m_promises & (1u << (u32)pledge); }
VeilState veil_state() const
{
return m_veil_state;
}
const UnveilNode& unveiled_paths() const
{
return m_unveiled_paths;
}
bool wait_for_tracer_at_next_execve() const
{
return m_wait_for_tracer_at_next_execve;
}
void set_wait_for_tracer_at_next_execve(bool val)
{
m_wait_for_tracer_at_next_execve = val;
}
KResultOr<u32> peek_user_data(Userspace<const u32*> address);
KResult poke_user_data(Userspace<u32*> address, u32 data);
void disowned_by_waiter(Process& process);
void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
Thread::WaitBlockCondition& wait_block_condition() { return m_wait_block_condition; }
HashMap<String, String>& coredump_metadata() { return m_coredump_metadata; }
const HashMap<String, String>& coredump_metadata() const { return m_coredump_metadata; }
void set_coredump_metadata(const String& key, String value);
const NonnullRefPtrVector<Thread>& threads_for_coredump(Badge<CoreDump>) const { return m_threads_for_coredump; }
PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }
Space& space() { return *m_space; }
const Space& space() const { return *m_space; }
VirtualAddress signal_trampoline() const { return m_signal_trampoline; }
private:
friend class MemoryManager;
friend class Scheduler;
friend class Region;
friend class PerformanceManager;
bool add_thread(Thread&);
bool remove_thread(Thread&);
Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty);
static RefPtr<Process> create(RefPtr<Thread>& first_thread, const String& name, uid_t, gid_t, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
KResult attach_resources(RefPtr<Thread>& first_thread, Process* fork_parent);
static ProcessID allocate_pid();
void kill_threads_except_self();
void kill_all_threads();
bool dump_core();
bool dump_perfcore();
bool create_perf_events_buffer_if_needed();
void delete_perf_events_buffer();
KResult do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const Elf32_Ehdr& main_program_header);
KResultOr<ssize_t> do_write(FileDescription&, const UserOrKernelBuffer&, size_t);
KResultOr<int> do_statvfs(String path, statvfs* buf);
KResultOr<RefPtr<FileDescription>> find_elf_interpreter_for_executable(const String& path, const Elf32_Ehdr& elf_header, int nread, size_t file_size);
int alloc_fd(int first_candidate_fd = 0);
KResult do_kill(Process&, int signal);
KResult do_killpg(ProcessGroupID pgrp, int signal);
KResult do_killall(int signal);
KResult do_killself(int signal);
KResultOr<siginfo_t> do_waitid(idtype_t idtype, int id, int options);
KResultOr<String> get_syscall_path_argument(const char* user_path, size_t path_length) const;
KResultOr<String> get_syscall_path_argument(Userspace<const char*> user_path, size_t path_length) const
{
return get_syscall_path_argument(user_path.unsafe_userspace_ptr(), path_length);
}
KResultOr<String> get_syscall_path_argument(const Syscall::StringArgument&) const;
bool has_tracee_thread(ProcessID tracer_pid);
void clear_futex_queues_on_exec();
void setup_socket_fd(int fd, NonnullRefPtr<FileDescription> description, int type);
inline PerformanceEventBuffer* current_perf_events_buffer()
{
if (g_profiling_all_threads)
return g_global_perf_events;
else if (m_profiling)
return m_perf_event_buffer.ptr();
else
return nullptr;
}
Process* m_prev { nullptr };
Process* m_next { nullptr };
String m_name;
OwnPtr<Space> m_space;
RefPtr<ProcessGroup> m_pg;
void protect_data();
void unprotect_data();
OwnPtr<ThreadTracer> m_tracer;
static constexpr int m_max_open_file_descriptors { FD_SETSIZE };
class FileDescriptionAndFlags {
public:
operator bool() const { return !!m_description; }
FileDescription* description() { return m_description; }
const FileDescription* description() const { return m_description; }
u32 flags() const { return m_flags; }
void set_flags(u32 flags) { m_flags = flags; }
void clear();
void set(NonnullRefPtr<FileDescription>&&, u32 flags = 0);
private:
RefPtr<FileDescription> m_description;
u32 m_flags { 0 };
};
Vector<FileDescriptionAndFlags> m_fds;
mutable RecursiveSpinLock m_thread_list_lock;
const bool m_is_kernel_process;
bool m_dead { false };
bool m_profiling { false };
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
bool m_should_dump_core { false };
RefPtr<Custody> m_executable;
RefPtr<Custody> m_cwd;
RefPtr<Custody> m_root_directory;
RefPtr<Custody> m_root_directory_relative_to_global_root;
Vector<String> m_arguments;
Vector<String> m_environment;
RefPtr<TTY> m_tty;
WeakPtr<Region> m_master_tls_region;
size_t m_master_tls_size { 0 };
size_t m_master_tls_alignment { 0 };
Lock m_big_lock { "Process" };
Lock m_ptrace_lock { "ptrace" };
RefPtr<Timer> m_alarm_timer;
VeilState m_veil_state { VeilState::None };
UnveilNode m_unveiled_paths { "/", { .full_path = "/", .unveil_inherited_from_root = true } };
OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
FutexQueues m_futex_queues;
SpinLock<u8> m_futex_lock;
// This member is used in the implementation of ptrace's PT_TRACEME flag.
// If it is set to true, the process will stop at the next execve syscall
// and wait for a tracer to attach.
bool m_wait_for_tracer_at_next_execve { false };
Thread::WaitBlockCondition m_wait_block_condition;
HashMap<String, String> m_coredump_metadata;
NonnullRefPtrVector<Thread> m_threads_for_coredump;
};
extern InlineLinkedList<Process>* g_processes;
extern RecursiveSpinLock g_processes_lock;
template<IteratorFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
VERIFY_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_processes_lock);
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (callback(*process) == IterationDecision::Break)
break;
process = next_process;
}
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
VERIFY_INTERRUPTS_DISABLED();
ProcessID my_pid = pid();
ScopedSpinLock lock(g_processes_lock);
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (process->ppid() == my_pid || process->has_tracee_thread(pid())) {
if (callback(*process) == IterationDecision::Break)
break;
}
process = next_process;
}
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
ScopedSpinLock thread_list_lock(m_thread_list_lock);
for (auto& thread : m_thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
ScopedSpinLock thread_list_lock(m_thread_list_lock);
for (auto& thread : m_thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
VERIFY_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_processes_lock);
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (!process->is_dead() && process->pgid() == pgid) {
if (callback(*process) == IterationDecision::Break)
break;
}
process = next_process;
}
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
return for_each([&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
return for_each_child([&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
ScopedSpinLock thread_list_lock(m_thread_list_lock);
for (auto& thread : m_thread_list)
callback(thread);
return IterationDecision::Continue;
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
ScopedSpinLock thread_list_lock(m_thread_list_lock);
for (auto& thread : m_thread_list)
callback(thread);
return IterationDecision::Continue;
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
return for_each_in_pgrp(pgid, [&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
inline bool InodeMetadata::may_read(const Process& process) const
{
return may_read(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_write(const Process& process) const
{
return may_write(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_execute(const Process& process) const
{
return may_execute(process.euid(), process.egid(), process.extra_gids());
}
inline ProcessID Thread::pid() const
{
return m_process->pid();
}
#define REQUIRE_NO_PROMISES \
do { \
if (Process::current()->has_promises()) { \
dbgln("Has made a promise"); \
Process::current()->crash(SIGABRT, 0); \
VERIFY_NOT_REACHED(); \
} \
} while (0)
#define REQUIRE_PROMISE(promise) \
do { \
if (Process::current()->has_promises() \
&& !Process::current()->has_promised(Pledge::promise)) { \
dbgln("Has not pledged {}", #promise); \
Process::current()->coredump_metadata().set( \
"pledge_violation", #promise); \
Process::current()->crash(SIGABRT, 0); \
VERIFY_NOT_REACHED(); \
} \
} while (0)
}
inline static String copy_string_from_user(const Kernel::Syscall::StringArgument& string)
{
return copy_string_from_user(string.characters, string.length);
}
inline static KResultOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string)
{
return try_copy_kstring_from_user(string.characters, string.length);
}
template<>
struct AK::Formatter<Kernel::Process> : AK::Formatter<String> {
void format(FormatBuilder& builder, const Kernel::Process& value)
{
return AK::Formatter<String>::format(builder, String::formatted("{}({})", value.name(), value.pid().value()));
}
};