ladybird/Kernel/VM/RangeAllocator.cpp
Andreas Kling b6937e2560 Kernel+LibC: Add MAP_RANDOMIZED flag for sys$mmap()
This can be used to request random VM placement instead of the highly
predictable regular mmap(nullptr, ...) VM allocation strategy.

It will soon be used to implement ASLR in the dynamic loader. :^)
2021-01-28 16:23:38 +01:00

260 lines
8.3 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/BinarySearch.h>
#include <AK/QuickSort.h>
#include <Kernel/Debug.h>
#include <Kernel/Random.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/RangeAllocator.h>
#define VM_GUARD_PAGES
namespace Kernel {
RangeAllocator::RangeAllocator()
: m_total_range({}, 0)
{
}
void RangeAllocator::initialize_with_range(VirtualAddress base, size_t size)
{
m_total_range = { base, size };
m_available_ranges.append({ base, size });
#if VRA_DEBUG
ScopedSpinLock lock(m_lock);
dump();
#endif
}
void RangeAllocator::initialize_from_parent(const RangeAllocator& parent_allocator)
{
ScopedSpinLock lock(parent_allocator.m_lock);
m_total_range = parent_allocator.m_total_range;
m_available_ranges = parent_allocator.m_available_ranges;
}
RangeAllocator::~RangeAllocator()
{
}
void RangeAllocator::dump() const
{
ASSERT(m_lock.is_locked());
dbgln("RangeAllocator({})", this);
for (auto& range : m_available_ranges) {
dbgln(" {:x} -> {:x}", range.base().get(), range.end().get() - 1);
}
}
Vector<Range, 2> Range::carve(const Range& taken)
{
ASSERT((taken.size() % PAGE_SIZE) == 0);
Vector<Range, 2> parts;
if (taken == *this)
return {};
if (taken.base() > base())
parts.append({ base(), taken.base().get() - base().get() });
if (taken.end() < end())
parts.append({ taken.end(), end().get() - taken.end().get() });
if constexpr (VRA_DEBUG) {
dbgln("VRA: carve: take {:x}-{:x} from {:x}-{:x}",
taken.base().get(),
taken.end().get() - 1,
base().get(),
end().get() - 1);
for (size_t i = 0; i < parts.size(); ++i)
dbgln(" {:x}-{:x}", parts[i].base().get(), parts[i].end().get() - 1);
}
return parts;
}
void RangeAllocator::carve_at_index(int index, const Range& range)
{
ASSERT(m_lock.is_locked());
auto remaining_parts = m_available_ranges[index].carve(range);
ASSERT(remaining_parts.size() >= 1);
m_available_ranges[index] = remaining_parts[0];
if (remaining_parts.size() == 2)
m_available_ranges.insert(index + 1, move(remaining_parts[1]));
}
Optional<Range> RangeAllocator::allocate_randomized(size_t size, size_t alignment)
{
if (!size)
return {};
ASSERT((size % PAGE_SIZE) == 0);
ASSERT((alignment % PAGE_SIZE) == 0);
// FIXME: I'm sure there's a smarter way to do this.
static constexpr size_t maximum_randomization_attempts = 1000;
for (size_t i = 0; i < maximum_randomization_attempts; ++i) {
VirtualAddress random_address { get_good_random<FlatPtr>() };
random_address.mask(PAGE_MASK);
if (!m_total_range.contains(random_address))
continue;
auto range = allocate_specific(random_address, size);
if (range.has_value())
return range;
}
return allocate_anywhere(size, alignment);
}
Optional<Range> RangeAllocator::allocate_anywhere(size_t size, size_t alignment)
{
if (!size)
return {};
ASSERT((size % PAGE_SIZE) == 0);
ASSERT((alignment % PAGE_SIZE) == 0);
#ifdef VM_GUARD_PAGES
// NOTE: We pad VM allocations with a guard page on each side.
size_t effective_size = size + PAGE_SIZE * 2;
size_t offset_from_effective_base = PAGE_SIZE;
#else
size_t effective_size = size;
size_t offset_from_effective_base = 0;
#endif
ScopedSpinLock lock(m_lock);
for (size_t i = 0; i < m_available_ranges.size(); ++i) {
auto& available_range = m_available_ranges[i];
// FIXME: This check is probably excluding some valid candidates when using a large alignment.
if (available_range.size() < (effective_size + alignment))
continue;
FlatPtr initial_base = available_range.base().offset(offset_from_effective_base).get();
FlatPtr aligned_base = round_up_to_power_of_two(initial_base, alignment);
Range allocated_range(VirtualAddress(aligned_base), size);
if (available_range == allocated_range) {
dbgln<VRA_DEBUG>("VRA: Allocated perfect-fit anywhere({}, {}): {}", size, alignment, allocated_range.base().get());
m_available_ranges.remove(i);
return allocated_range;
}
carve_at_index(i, allocated_range);
if constexpr (VRA_DEBUG) {
dbgln<VRA_DEBUG>("VRA: Allocated anywhere({}, {}): {}", size, alignment, allocated_range.base().get());
dump();
}
return allocated_range;
}
klog() << "VRA: Failed to allocate anywhere: " << size << ", " << alignment;
return {};
}
Optional<Range> RangeAllocator::allocate_specific(VirtualAddress base, size_t size)
{
if (!size)
return {};
ASSERT(base.is_page_aligned());
ASSERT((size % PAGE_SIZE) == 0);
Range allocated_range(base, size);
ScopedSpinLock lock(m_lock);
for (size_t i = 0; i < m_available_ranges.size(); ++i) {
auto& available_range = m_available_ranges[i];
if (!available_range.contains(base, size))
continue;
if (available_range == allocated_range) {
m_available_ranges.remove(i);
return allocated_range;
}
carve_at_index(i, allocated_range);
if constexpr (VRA_DEBUG) {
dbgln("VRA: Allocated specific({}): {}", size, available_range.base().get());
dump();
}
return allocated_range;
}
dbgln("VRA: Failed to allocate specific range: {}({})", base, size);
return {};
}
void RangeAllocator::deallocate(const Range& range)
{
ScopedSpinLock lock(m_lock);
ASSERT(m_total_range.contains(range));
ASSERT(range.size());
ASSERT((range.size() % PAGE_SIZE) == 0);
ASSERT(range.base() < range.end());
if constexpr (VRA_DEBUG) {
dbgln("VRA: Deallocate: {}({})", range.base().get(), range.size());
dump();
}
ASSERT(!m_available_ranges.is_empty());
size_t nearby_index = 0;
auto* existing_range = binary_search(
m_available_ranges.span(),
range,
&nearby_index,
[](auto& a, auto& b) { return a.base().get() - b.end().get(); });
size_t inserted_index = 0;
if (existing_range) {
existing_range->m_size += range.size();
inserted_index = nearby_index;
} else {
m_available_ranges.insert_before_matching(
Range(range), [&](auto& entry) {
return entry.base() >= range.end();
},
nearby_index, &inserted_index);
}
if (inserted_index < (m_available_ranges.size() - 1)) {
// We already merged with previous. Try to merge with next.
auto& inserted_range = m_available_ranges[inserted_index];
auto& next_range = m_available_ranges[inserted_index + 1];
if (inserted_range.end() == next_range.base()) {
inserted_range.m_size += next_range.size();
m_available_ranges.remove(inserted_index + 1);
return;
}
}
#if VRA_DEBUG
dbgln("VRA: After deallocate");
dump();
#endif
}
}