ladybird/Kernel/Lock.h
Andreas Kling 5d180d1f99 Everywhere: Rename ASSERT => VERIFY
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)

Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.

We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
2021-02-23 20:56:54 +01:00

167 lines
4.8 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Atomic.h>
#include <AK/HashMap.h>
#include <AK/Types.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Forward.h>
#include <Kernel/LockMode.h>
#include <Kernel/WaitQueue.h>
namespace Kernel {
class Lock {
AK_MAKE_NONCOPYABLE(Lock);
AK_MAKE_NONMOVABLE(Lock);
public:
using Mode = LockMode;
Lock(const char* name = nullptr)
: m_name(name)
{
}
~Lock() { }
void lock(Mode = Mode::Exclusive);
#if LOCK_DEBUG
void lock(const char* file, int line, Mode mode = Mode::Exclusive);
void restore_lock(const char* file, int line, Mode, u32);
#endif
void unlock();
[[nodiscard]] Mode force_unlock_if_locked(u32&);
void restore_lock(Mode, u32);
[[nodiscard]] bool is_locked() const { return m_mode != Mode::Unlocked; }
void clear_waiters();
[[nodiscard]] const char* name() const { return m_name; }
static const char* mode_to_string(Mode mode)
{
switch (mode) {
case Mode::Unlocked:
return "unlocked";
case Mode::Exclusive:
return "exclusive";
case Mode::Shared:
return "shared";
default:
return "invalid";
}
}
private:
Atomic<bool> m_lock { false };
const char* m_name { nullptr };
WaitQueue m_queue;
Atomic<Mode, AK::MemoryOrder::memory_order_relaxed> m_mode { Mode::Unlocked };
// When locked exclusively, only the thread already holding the lock can
// lock it again. When locked in shared mode, any thread can do that.
u32 m_times_locked { 0 };
// One of the threads that hold this lock, or nullptr. When locked in shared
// mode, this is stored on best effort basis: nullptr value does *not* mean
// the lock is unlocked, it just means we don't know which threads hold it.
// When locked exclusively, this is always the one thread that holds the
// lock.
RefPtr<Thread> m_holder;
HashMap<Thread*, u32> m_shared_holders;
};
class Locker {
public:
#if LOCK_DEBUG
ALWAYS_INLINE explicit Locker(const char* file, int line, Lock& l, Lock::Mode mode = Lock::Mode::Exclusive)
: m_lock(l)
{
m_lock.lock(file, line, mode);
}
#endif
ALWAYS_INLINE explicit Locker(Lock& l, Lock::Mode mode = Lock::Mode::Exclusive)
: m_lock(l)
{
m_lock.lock(mode);
}
ALWAYS_INLINE ~Locker()
{
if (m_locked)
unlock();
}
ALWAYS_INLINE void unlock()
{
VERIFY(m_locked);
m_locked = false;
m_lock.unlock();
}
ALWAYS_INLINE void lock(Lock::Mode mode = Lock::Mode::Exclusive)
{
VERIFY(!m_locked);
m_locked = true;
m_lock.lock(mode);
}
private:
Lock& m_lock;
bool m_locked { true };
};
#if LOCK_DEBUG
# define LOCKER(...) Locker locker(__FILE__, __LINE__, __VA_ARGS__)
# define RESTORE_LOCK(lock, ...) (lock).restore_lock(__FILE__, __LINE__, __VA_ARGS__)
#else
# define LOCKER(...) Locker locker(__VA_ARGS__)
# define RESTORE_LOCK(lock, ...) (lock).restore_lock(__VA_ARGS__)
#endif
template<typename T>
class Lockable {
public:
Lockable() { }
Lockable(T&& resource)
: m_resource(move(resource))
{
}
[[nodiscard]] Lock& lock() { return m_lock; }
[[nodiscard]] T& resource() { return m_resource; }
[[nodiscard]] T lock_and_copy()
{
LOCKER(m_lock);
return m_resource;
}
private:
T m_resource;
Lock m_lock;
};
}