ladybird/Userland/Libraries/LibWeb/DOM/Range.cpp
Andreas Kling 6f433c8656 LibWeb+LibJS: Make the EventTarget hierarchy (incl. DOM) GC-allocated
This is a monster patch that turns all EventTargets into GC-allocated
PlatformObjects. Their C++ wrapper classes are removed, and the LibJS
garbage collector is now responsible for their lifetimes.

There's a fair amount of hacks and band-aids in this patch, and we'll
have a lot of cleanup to do after this.
2022-09-06 00:27:09 +02:00

1111 lines
47 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020, the SerenityOS developers.
* Copyright (c) 2022, Luke Wilde <lukew@serenityos.org>
* Copyright (c) 2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibWeb/Bindings/RangePrototype.h>
#include <LibWeb/DOM/Comment.h>
#include <LibWeb/DOM/Document.h>
#include <LibWeb/DOM/DocumentFragment.h>
#include <LibWeb/DOM/DocumentType.h>
#include <LibWeb/DOM/Node.h>
#include <LibWeb/DOM/ProcessingInstruction.h>
#include <LibWeb/DOM/Range.h>
#include <LibWeb/DOM/Text.h>
#include <LibWeb/HTML/Window.h>
namespace Web::DOM {
HashTable<Range*>& Range::live_ranges()
{
static HashTable<Range*> ranges;
return ranges;
}
JS::NonnullGCPtr<Range> Range::create(HTML::Window& window)
{
return Range::create(window.associated_document());
}
JS::NonnullGCPtr<Range> Range::create(Document& document)
{
auto& window_object = document.window();
return *window_object.heap().allocate<Range>(window_object.realm(), document);
}
JS::NonnullGCPtr<Range> Range::create(Node& start_container, u32 start_offset, Node& end_container, u32 end_offset)
{
auto& window_object = start_container.document().window();
return *window_object.heap().allocate<Range>(window_object.realm(), start_container, start_offset, end_container, end_offset);
}
JS::NonnullGCPtr<Range> Range::create_with_global_object(HTML::Window& window)
{
return Range::create(window.impl());
}
Range::Range(Document& document)
: Range(document, 0, document, 0)
{
set_prototype(&document.window().ensure_web_prototype<Bindings::RangePrototype>("Range"));
}
Range::Range(Node& start_container, u32 start_offset, Node& end_container, u32 end_offset)
: AbstractRange(start_container, start_offset, end_container, end_offset)
{
set_prototype(&start_container.document().window().ensure_web_prototype<Bindings::RangePrototype>("Range"));
live_ranges().set(this);
}
Range::~Range()
{
live_ranges().remove(this);
}
// https://dom.spec.whatwg.org/#concept-range-root
Node& Range::root()
{
// The root of a live range is the root of its start node.
return m_start_container->root();
}
Node const& Range::root() const
{
return m_start_container->root();
}
enum class RelativeBoundaryPointPosition {
Equal,
Before,
After,
};
// https://dom.spec.whatwg.org/#concept-range-bp-position
static RelativeBoundaryPointPosition position_of_boundary_point_relative_to_other_boundary_point(Node const& node_a, u32 offset_a, Node const& node_b, u32 offset_b)
{
// 1. Assert: nodeA and nodeB have the same root.
VERIFY(&node_a.root() == &node_b.root());
// 2. If nodeA is nodeB, then return equal if offsetA is offsetB, before if offsetA is less than offsetB, and after if offsetA is greater than offsetB.
if (&node_a == &node_b) {
if (offset_a == offset_b)
return RelativeBoundaryPointPosition::Equal;
if (offset_a < offset_b)
return RelativeBoundaryPointPosition::Before;
return RelativeBoundaryPointPosition::After;
}
// 3. If nodeA is following nodeB, then if the position of (nodeB, offsetB) relative to (nodeA, offsetA) is before, return after, and if it is after, return before.
if (node_a.is_following(node_b)) {
auto relative_position = position_of_boundary_point_relative_to_other_boundary_point(node_b, offset_b, node_a, offset_a);
if (relative_position == RelativeBoundaryPointPosition::Before)
return RelativeBoundaryPointPosition::After;
if (relative_position == RelativeBoundaryPointPosition::After)
return RelativeBoundaryPointPosition::Before;
}
// 4. If nodeA is an ancestor of nodeB:
if (node_a.is_ancestor_of(node_b)) {
// 1. Let child be nodeB.
JS::NonnullGCPtr<Node> child = node_b;
// 2. While child is not a child of nodeA, set child to its parent.
while (!node_a.is_parent_of(child)) {
auto* parent = child->parent();
VERIFY(parent);
child = parent;
}
// 3. If childs index is less than offsetA, then return after.
if (child->index() < offset_a)
return RelativeBoundaryPointPosition::After;
}
// 5. Return before.
return RelativeBoundaryPointPosition::Before;
}
ExceptionOr<void> Range::set_start_or_end(Node& node, u32 offset, StartOrEnd start_or_end)
{
// To set the start or end of a range to a boundary point (node, offset), run these steps:
// 1. If node is a doctype, then throw an "InvalidNodeTypeError" DOMException.
if (is<DocumentType>(node))
return InvalidNodeTypeError::create("Node cannot be a DocumentType.");
// 2. If offset is greater than nodes length, then throw an "IndexSizeError" DOMException.
if (offset > node.length())
return IndexSizeError::create(String::formatted("Node does not contain a child at offset {}", offset));
// 3. Let bp be the boundary point (node, offset).
if (start_or_end == StartOrEnd::Start) {
// -> If these steps were invoked as "set the start"
// 1. If ranges root is not equal to nodes root, or if bp is after the ranges end, set ranges end to bp.
if (&root() != &node.root() || position_of_boundary_point_relative_to_other_boundary_point(node, offset, m_end_container, m_end_offset) == RelativeBoundaryPointPosition::After) {
m_end_container = &node;
m_end_offset = offset;
}
// 2. Set ranges start to bp.
m_start_container = &node;
m_start_offset = offset;
} else {
// -> If these steps were invoked as "set the end"
VERIFY(start_or_end == StartOrEnd::End);
// 1. If ranges root is not equal to nodes root, or if bp is before the ranges start, set ranges start to bp.
if (&root() != &node.root() || position_of_boundary_point_relative_to_other_boundary_point(node, offset, m_start_container, m_start_offset) == RelativeBoundaryPointPosition::Before) {
m_start_container = &node;
m_start_offset = offset;
}
// 2. Set ranges end to bp.
m_end_container = &node;
m_end_offset = offset;
}
return {};
}
// https://dom.spec.whatwg.org/#concept-range-bp-set
ExceptionOr<void> Range::set_start(Node& node, u32 offset)
{
// The setStart(node, offset) method steps are to set the start of this to boundary point (node, offset).
return set_start_or_end(node, offset, StartOrEnd::Start);
}
ExceptionOr<void> Range::set_end(Node& node, u32 offset)
{
// The setEnd(node, offset) method steps are to set the end of this to boundary point (node, offset).
return set_start_or_end(node, offset, StartOrEnd::End);
}
// https://dom.spec.whatwg.org/#dom-range-setstartbefore
ExceptionOr<void> Range::set_start_before(Node& node)
{
// 1. Let parent be nodes parent.
auto* parent = node.parent();
// 2. If parent is null, then throw an "InvalidNodeTypeError" DOMException.
if (!parent)
return InvalidNodeTypeError::create("Given node has no parent.");
// 3. Set the start of this to boundary point (parent, nodes index).
return set_start_or_end(*parent, node.index(), StartOrEnd::Start);
}
// https://dom.spec.whatwg.org/#dom-range-setstartafter
ExceptionOr<void> Range::set_start_after(Node& node)
{
// 1. Let parent be nodes parent.
auto* parent = node.parent();
// 2. If parent is null, then throw an "InvalidNodeTypeError" DOMException.
if (!parent)
return InvalidNodeTypeError::create("Given node has no parent.");
// 3. Set the start of this to boundary point (parent, nodes index plus 1).
return set_start_or_end(*parent, node.index() + 1, StartOrEnd::Start);
}
// https://dom.spec.whatwg.org/#dom-range-setendbefore
ExceptionOr<void> Range::set_end_before(Node& node)
{
// 1. Let parent be nodes parent.
auto* parent = node.parent();
// 2. If parent is null, then throw an "InvalidNodeTypeError" DOMException.
if (!parent)
return InvalidNodeTypeError::create("Given node has no parent.");
// 3. Set the end of this to boundary point (parent, nodes index).
return set_start_or_end(*parent, node.index(), StartOrEnd::End);
}
// https://dom.spec.whatwg.org/#dom-range-setendafter
ExceptionOr<void> Range::set_end_after(Node& node)
{
// 1. Let parent be nodes parent.
auto* parent = node.parent();
// 2. If parent is null, then throw an "InvalidNodeTypeError" DOMException.
if (!parent)
return InvalidNodeTypeError::create("Given node has no parent.");
// 3. Set the end of this to boundary point (parent, nodes index plus 1).
return set_start_or_end(*parent, node.index() + 1, StartOrEnd::End);
}
// https://dom.spec.whatwg.org/#dom-range-compareboundarypoints
ExceptionOr<i16> Range::compare_boundary_points(u16 how, Range const& source_range) const
{
// 1. If how is not one of
// - START_TO_START,
// - START_TO_END,
// - END_TO_END, and
// - END_TO_START,
// then throw a "NotSupportedError" DOMException.
if (how != HowToCompareBoundaryPoints::START_TO_START && how != HowToCompareBoundaryPoints::START_TO_END && how != HowToCompareBoundaryPoints::END_TO_END && how != HowToCompareBoundaryPoints::END_TO_START)
return NotSupportedError::create(String::formatted("Expected 'how' to be one of START_TO_START (0), START_TO_END (1), END_TO_END (2) or END_TO_START (3), got {}", how));
// 2. If thiss root is not the same as sourceRanges root, then throw a "WrongDocumentError" DOMException.
if (&root() != &source_range.root())
return WrongDocumentError::create("This range is not in the same tree as the source range.");
JS::GCPtr<Node> this_point_node;
u32 this_point_offset = 0;
JS::GCPtr<Node> other_point_node;
u32 other_point_offset = 0;
// 3. If how is:
switch (how) {
case HowToCompareBoundaryPoints::START_TO_START:
// -> START_TO_START:
// Let this point be thiss start. Let other point be sourceRanges start.
this_point_node = m_start_container;
this_point_offset = m_start_offset;
other_point_node = source_range.m_start_container;
other_point_offset = source_range.m_start_offset;
break;
case HowToCompareBoundaryPoints::START_TO_END:
// -> START_TO_END:
// Let this point be thiss end. Let other point be sourceRanges start.
this_point_node = m_end_container;
this_point_offset = m_end_offset;
other_point_node = source_range.m_start_container;
other_point_offset = source_range.m_start_offset;
break;
case HowToCompareBoundaryPoints::END_TO_END:
// -> END_TO_END:
// Let this point be thiss end. Let other point be sourceRanges end.
this_point_node = m_end_container;
this_point_offset = m_end_offset;
other_point_node = source_range.m_end_container;
other_point_offset = source_range.m_end_offset;
break;
case HowToCompareBoundaryPoints::END_TO_START:
// -> END_TO_START:
// Let this point be thiss start. Let other point be sourceRanges end.
this_point_node = m_start_container;
this_point_offset = m_start_offset;
other_point_node = source_range.m_end_container;
other_point_offset = source_range.m_end_offset;
break;
default:
VERIFY_NOT_REACHED();
}
VERIFY(this_point_node);
VERIFY(other_point_node);
// 4. If the position of this point relative to other point is
auto relative_position = position_of_boundary_point_relative_to_other_boundary_point(*this_point_node, this_point_offset, *other_point_node, other_point_offset);
switch (relative_position) {
case RelativeBoundaryPointPosition::Before:
// -> before
// Return 1.
return -1;
case RelativeBoundaryPointPosition::Equal:
// -> equal
// Return 0.
return 0;
case RelativeBoundaryPointPosition::After:
// -> after
// Return 1.
return 1;
default:
VERIFY_NOT_REACHED();
}
}
// https://dom.spec.whatwg.org/#concept-range-select
ExceptionOr<void> Range::select(Node& node)
{
// 1. Let parent be nodes parent.
auto* parent = node.parent();
// 2. If parent is null, then throw an "InvalidNodeTypeError" DOMException.
if (!parent)
return InvalidNodeTypeError::create("Given node has no parent.");
// 3. Let index be nodes index.
auto index = node.index();
// 4. Set ranges start to boundary point (parent, index).
m_start_container = parent;
m_start_offset = index;
// 5. Set ranges end to boundary point (parent, index plus 1).
m_end_container = parent;
m_end_offset = index + 1;
return {};
}
// https://dom.spec.whatwg.org/#dom-range-selectnode
ExceptionOr<void> Range::select_node(Node& node)
{
// The selectNode(node) method steps are to select node within this.
return select(node);
}
// https://dom.spec.whatwg.org/#dom-range-collapse
void Range::collapse(bool to_start)
{
// The collapse(toStart) method steps are to, if toStart is true, set end to start; otherwise set start to end.
if (to_start) {
m_end_container = m_start_container;
m_end_offset = m_start_offset;
return;
}
m_start_container = m_end_container;
m_start_offset = m_end_offset;
}
// https://dom.spec.whatwg.org/#dom-range-selectnodecontents
ExceptionOr<void> Range::select_node_contents(Node const& node)
{
// 1. If node is a doctype, throw an "InvalidNodeTypeError" DOMException.
if (is<DocumentType>(node))
return InvalidNodeTypeError::create("Node cannot be a DocumentType.");
// 2. Let length be the length of node.
auto length = node.length();
// 3. Set start to the boundary point (node, 0).
m_start_container = &node;
m_start_offset = 0;
// 4. Set end to the boundary point (node, length).
m_end_container = &node;
m_end_offset = length;
return {};
}
JS::NonnullGCPtr<Range> Range::clone_range() const
{
return *heap().allocate<Range>(shape().realm(), const_cast<Node&>(*m_start_container), m_start_offset, const_cast<Node&>(*m_end_container), m_end_offset);
}
JS::NonnullGCPtr<Range> Range::inverted() const
{
return *heap().allocate<Range>(shape().realm(), const_cast<Node&>(*m_end_container), m_end_offset, const_cast<Node&>(*m_start_container), m_start_offset);
}
JS::NonnullGCPtr<Range> Range::normalized() const
{
if (m_start_container.ptr() == m_end_container.ptr()) {
if (m_start_offset <= m_end_offset)
return clone_range();
return inverted();
}
if (m_start_container->is_before(m_end_container))
return clone_range();
return inverted();
}
// https://dom.spec.whatwg.org/#dom-range-commonancestorcontainer
JS::NonnullGCPtr<Node> Range::common_ancestor_container() const
{
// 1. Let container be start node.
auto container = m_start_container;
// 2. While container is not an inclusive ancestor of end node, let container be containers parent.
while (!container->is_inclusive_ancestor_of(m_end_container)) {
VERIFY(container->parent());
container = container->parent();
}
// 3. Return container.
return container;
}
// https://dom.spec.whatwg.org/#dom-range-intersectsnode
bool Range::intersects_node(Node const& node) const
{
// 1. If nodes root is different from thiss root, return false.
if (&node.root() != &root())
return false;
// 2. Let parent be nodes parent.
auto* parent = node.parent();
// 3. If parent is null, return true.
if (!parent)
return true;
// 4. Let offset be nodes index.
auto offset = node.index();
// 5. If (parent, offset) is before end and (parent, offset plus 1) is after start, return true
auto relative_position_to_end = position_of_boundary_point_relative_to_other_boundary_point(*parent, offset, m_end_container, m_end_offset);
auto relative_position_to_start = position_of_boundary_point_relative_to_other_boundary_point(*parent, offset + 1, m_start_container, m_start_offset);
if (relative_position_to_end == RelativeBoundaryPointPosition::Before && relative_position_to_start == RelativeBoundaryPointPosition::After)
return true;
// 6. Return false.
return false;
}
// https://dom.spec.whatwg.org/#dom-range-ispointinrange
ExceptionOr<bool> Range::is_point_in_range(Node const& node, u32 offset) const
{
// 1. If nodes root is different from thiss root, return false.
if (&node.root() != &root())
return false;
// 2. If node is a doctype, then throw an "InvalidNodeTypeError" DOMException.
if (is<DocumentType>(node))
return InvalidNodeTypeError::create("Node cannot be a DocumentType.");
// 3. If offset is greater than nodes length, then throw an "IndexSizeError" DOMException.
if (offset > node.length())
return IndexSizeError::create(String::formatted("Node does not contain a child at offset {}", offset));
// 4. If (node, offset) is before start or after end, return false.
auto relative_position_to_start = position_of_boundary_point_relative_to_other_boundary_point(node, offset, m_start_container, m_start_offset);
auto relative_position_to_end = position_of_boundary_point_relative_to_other_boundary_point(node, offset, m_end_container, m_end_offset);
if (relative_position_to_start == RelativeBoundaryPointPosition::Before || relative_position_to_end == RelativeBoundaryPointPosition::After)
return false;
// 5. Return true.
return true;
}
// https://dom.spec.whatwg.org/#dom-range-comparepoint
ExceptionOr<i16> Range::compare_point(Node const& node, u32 offset) const
{
// 1. If nodes root is different from thiss root, then throw a "WrongDocumentError" DOMException.
if (&node.root() != &root())
return WrongDocumentError::create("Given node is not in the same document as the range.");
// 2. If node is a doctype, then throw an "InvalidNodeTypeError" DOMException.
if (is<DocumentType>(node))
return InvalidNodeTypeError::create("Node cannot be a DocumentType.");
// 3. If offset is greater than nodes length, then throw an "IndexSizeError" DOMException.
if (offset > node.length())
return IndexSizeError::create(String::formatted("Node does not contain a child at offset {}", offset));
// 4. If (node, offset) is before start, return 1.
auto relative_position_to_start = position_of_boundary_point_relative_to_other_boundary_point(node, offset, m_start_container, m_start_offset);
if (relative_position_to_start == RelativeBoundaryPointPosition::Before)
return -1;
// 5. If (node, offset) is after end, return 1.
auto relative_position_to_end = position_of_boundary_point_relative_to_other_boundary_point(node, offset, m_end_container, m_end_offset);
if (relative_position_to_end == RelativeBoundaryPointPosition::After)
return 1;
// 6. Return 0.
return 0;
}
// https://dom.spec.whatwg.org/#dom-range-stringifier
String Range::to_string() const
{
// 1. Let s be the empty string.
StringBuilder builder;
// 2. If thiss start node is thiss end node and it is a Text node,
// then return the substring of that Text nodes data beginning at thiss start offset and ending at thiss end offset.
if (start_container() == end_container() && is<Text>(*start_container()))
return static_cast<Text const&>(*start_container()).data().substring(start_offset(), end_offset() - start_offset());
// 3. If thiss start node is a Text node, then append the substring of that nodes data from thiss start offset until the end to s.
if (is<Text>(*start_container()))
builder.append(static_cast<Text const&>(*start_container()).data().substring_view(start_offset()));
// 4. Append the concatenation of the data of all Text nodes that are contained in this, in tree order, to s.
for (Node const* node = start_container(); node != end_container()->next_sibling(); node = node->next_in_pre_order()) {
if (is<Text>(*node) && contains_node(*node))
builder.append(static_cast<Text const&>(*node).data());
}
// 5. If thiss end node is a Text node, then append the substring of that nodes data from its start until thiss end offset to s.
if (is<Text>(*end_container()))
builder.append(static_cast<Text const&>(*end_container()).data().substring_view(0, end_offset()));
// 6. Return s.
return builder.to_string();
}
// https://dom.spec.whatwg.org/#dom-range-extractcontents
ExceptionOr<JS::NonnullGCPtr<DocumentFragment>> Range::extract_contents()
{
return extract();
}
// https://dom.spec.whatwg.org/#concept-range-extract
ExceptionOr<JS::NonnullGCPtr<DocumentFragment>> Range::extract()
{
// 1. Let fragment be a new DocumentFragment node whose node document is ranges start nodes node document.
auto* fragment = heap().allocate<DOM::DocumentFragment>(realm(), const_cast<Document&>(start_container()->document()));
// 2. If range is collapsed, then return fragment.
if (collapsed())
return JS::NonnullGCPtr(*fragment);
// 3. Let original start node, original start offset, original end node, and original end offset
// be ranges start node, start offset, end node, and end offset, respectively.
JS::NonnullGCPtr<Node> original_start_node = m_start_container;
auto original_start_offset = m_start_offset;
JS::NonnullGCPtr<Node> original_end_node = m_end_container;
auto original_end_offset = m_end_offset;
// 4. If original start node is original end node and it is a CharacterData node, then:
if (original_start_node.ptr() == original_end_node.ptr() && is<CharacterData>(*original_start_node)) {
// 1. Let clone be a clone of original start node.
auto clone = original_start_node->clone_node();
// 2. Set the data of clone to the result of substringing data with node original start node,
// offset original start offset, and count original end offset minus original start offset.
auto result = TRY(static_cast<CharacterData const&>(*original_start_node).substring_data(original_start_offset, original_end_offset - original_start_offset));
verify_cast<CharacterData>(*clone).set_data(move(result));
// 3. Append clone to fragment.
fragment->append_child(clone);
// 4. Replace data with node original start node, offset original start offset, count original end offset minus original start offset, and data the empty string.
static_cast<CharacterData&>(*original_start_node).replace_data(original_start_offset, original_end_offset - original_start_offset, "");
// 5. Return fragment.
return JS::NonnullGCPtr(*fragment);
}
// 5. Let common ancestor be original start node.
JS::NonnullGCPtr<Node> common_ancestor = original_start_node;
// 6. While common ancestor is not an inclusive ancestor of original end node, set common ancestor to its own parent.
while (!common_ancestor->is_inclusive_ancestor_of(original_end_node))
common_ancestor = common_ancestor->parent_node();
// 7. Let first partially contained child be null.
JS::GCPtr<Node> first_partially_contained_child;
// 8. If original start node is not an inclusive ancestor of original end node,
// set first partially contained child to the first child of common ancestor that is partially contained in range.
if (!original_start_node->is_inclusive_ancestor_of(original_end_node)) {
for (auto* child = common_ancestor->first_child(); child; child = child->next_sibling()) {
if (partially_contains_node(*child)) {
first_partially_contained_child = child;
break;
}
}
}
// 9. Let last partially contained child be null.
JS::GCPtr<Node> last_partially_contained_child;
// 10. If original end node is not an inclusive ancestor of original start node,
// set last partially contained child to the last child of common ancestor that is partially contained in range.
if (!original_end_node->is_inclusive_ancestor_of(original_start_node)) {
for (auto* child = common_ancestor->last_child(); child; child = child->previous_sibling()) {
if (partially_contains_node(*child)) {
last_partially_contained_child = child;
break;
}
}
}
// 11. Let contained children be a list of all children of common ancestor that are contained in range, in tree order.
Vector<JS::NonnullGCPtr<Node>> contained_children;
for (Node const* node = common_ancestor->first_child(); node; node = node->next_sibling()) {
if (contains_node(*node))
contained_children.append(*node);
}
// 12. If any member of contained children is a doctype, then throw a "HierarchyRequestError" DOMException.
for (auto const& child : contained_children) {
if (is<DocumentType>(*child))
return DOM::HierarchyRequestError::create("Contained child is a DocumentType");
}
JS::GCPtr<Node> new_node;
size_t new_offset = 0;
// 13. If original start node is an inclusive ancestor of original end node, set new node to original start node and new offset to original start offset.
if (original_start_node->is_inclusive_ancestor_of(original_end_node)) {
new_node = original_start_node;
new_offset = original_start_offset;
}
// 14. Otherwise:
else {
// 1. Let reference node equal original start node.
JS::GCPtr<Node> reference_node = original_start_node;
// 2. While reference nodes parent is not null and is not an inclusive ancestor of original end node, set reference node to its parent.
while (reference_node->parent_node() && !reference_node->parent_node()->is_inclusive_ancestor_of(original_end_node))
reference_node = reference_node->parent_node();
// 3. Set new node to the parent of reference node, and new offset to one plus reference nodes index.
new_node = reference_node->parent_node();
new_offset = 1 + reference_node->index();
}
// 15. If first partially contained child is a CharacterData node, then:
if (first_partially_contained_child && is<CharacterData>(*first_partially_contained_child)) {
// 1. Let clone be a clone of original start node.
auto clone = original_start_node->clone_node();
// 2. Set the data of clone to the result of substringing data with node original start node, offset original start offset,
// and count original start nodes length minus original start offset.
auto result = TRY(static_cast<CharacterData const&>(*original_start_node).substring_data(original_start_offset, original_start_node->length() - original_start_offset));
verify_cast<CharacterData>(*clone).set_data(move(result));
// 3. Append clone to fragment.
fragment->append_child(clone);
// 4. Replace data with node original start node, offset original start offset, count original start nodes length minus original start offset, and data the empty string.
static_cast<CharacterData&>(*original_start_node).replace_data(original_start_offset, original_start_node->length() - original_start_offset, "");
}
// 16. Otherwise, if first partially contained child is not null:
else if (first_partially_contained_child) {
// 1. Let clone be a clone of first partially contained child.
auto clone = first_partially_contained_child->clone_node();
// 2. Append clone to fragment.
fragment->append_child(clone);
// 3. Let subrange be a new live range whose start is (original start node, original start offset) and whose end is (first partially contained child, first partially contained childs length).
auto subrange = Range::create(original_start_node, original_start_offset, *first_partially_contained_child, first_partially_contained_child->length());
// 4. Let subfragment be the result of extracting subrange.
auto subfragment = TRY(subrange->extract());
// 5. Append subfragment to clone.
clone->append_child(subfragment);
}
// 17. For each contained child in contained children, append contained child to fragment.
for (auto& contained_child : contained_children) {
fragment->append_child(contained_child);
}
// 18. If last partially contained child is a CharacterData node, then:
if (last_partially_contained_child && is<CharacterData>(*last_partially_contained_child)) {
// 1. Let clone be a clone of original end node.
auto clone = original_end_node->clone_node();
// 2. Set the data of clone to the result of substringing data with node original end node, offset 0, and count original end offset.
auto result = TRY(static_cast<CharacterData const&>(*original_end_node).substring_data(0, original_end_offset));
verify_cast<CharacterData>(*clone).set_data(move(result));
// 3. Append clone to fragment.
fragment->append_child(clone);
// 4. Replace data with node original end node, offset 0, count original end offset, and data the empty string.
verify_cast<CharacterData>(*original_end_node).replace_data(0, original_end_offset, "");
}
// 19. Otherwise, if last partially contained child is not null:
else if (last_partially_contained_child) {
// 1. Let clone be a clone of last partially contained child.
auto clone = last_partially_contained_child->clone_node();
// 2. Append clone to fragment.
fragment->append_child(clone);
// 3. Let subrange be a new live range whose start is (last partially contained child, 0) and whose end is (original end node, original end offset).
auto subrange = Range::create(*last_partially_contained_child, 0, original_end_node, original_end_offset);
// 4. Let subfragment be the result of extracting subrange.
auto subfragment = TRY(subrange->extract());
// 5. Append subfragment to clone.
clone->append_child(subfragment);
}
// 20. Set ranges start and end to (new node, new offset).
set_start(*new_node, new_offset);
set_end(*new_node, new_offset);
// 21. Return fragment.
return JS::NonnullGCPtr(*fragment);
}
// https://dom.spec.whatwg.org/#contained
bool Range::contains_node(Node const& node) const
{
// A node node is contained in a live range range if nodes root is ranges root,
if (&node.root() != &root())
return false;
// and (node, 0) is after ranges start,
if (position_of_boundary_point_relative_to_other_boundary_point(node, 0, m_start_container, m_start_offset) != RelativeBoundaryPointPosition::After)
return false;
// and (node, nodes length) is before ranges end.
if (position_of_boundary_point_relative_to_other_boundary_point(node, node.length(), m_end_container, m_end_offset) != RelativeBoundaryPointPosition::Before)
return false;
return true;
}
// https://dom.spec.whatwg.org/#partially-contained
bool Range::partially_contains_node(Node const& node) const
{
// A node is partially contained in a live range if its an inclusive ancestor of the live ranges start node but not its end node, or vice versa.
if (node.is_inclusive_ancestor_of(m_start_container) && &node != m_end_container.ptr())
return true;
if (node.is_inclusive_ancestor_of(m_end_container) && &node != m_start_container.ptr())
return true;
return false;
}
// https://dom.spec.whatwg.org/#dom-range-insertnode
ExceptionOr<void> Range::insert_node(JS::NonnullGCPtr<Node> node)
{
return insert(node);
}
// https://dom.spec.whatwg.org/#concept-range-insert
ExceptionOr<void> Range::insert(JS::NonnullGCPtr<Node> node)
{
// 1. If ranges start node is a ProcessingInstruction or Comment node, is a Text node whose parent is null, or is node, then throw a "HierarchyRequestError" DOMException.
if ((is<ProcessingInstruction>(*m_start_container) || is<Comment>(*m_start_container))
|| (is<Text>(*m_start_container) && !m_start_container->parent_node())
|| m_start_container.ptr() == node.ptr()) {
return DOM::HierarchyRequestError::create("Range has inappropriate start node for insertion");
}
// 2. Let referenceNode be null.
JS::GCPtr<Node> reference_node;
// 3. If ranges start node is a Text node, set referenceNode to that Text node.
if (is<Text>(*m_start_container)) {
reference_node = m_start_container;
}
// 4. Otherwise, set referenceNode to the child of start node whose index is start offset, and null if there is no such child.
else {
reference_node = m_start_container->child_at_index(m_start_offset);
}
// 5. Let parent be ranges start node if referenceNode is null, and referenceNodes parent otherwise.
JS::GCPtr<Node> parent;
if (!reference_node)
parent = m_start_container;
else
parent = reference_node->parent();
// 6. Ensure pre-insertion validity of node into parent before referenceNode.
TRY(parent->ensure_pre_insertion_validity(node, reference_node));
// 7. If ranges start node is a Text node, set referenceNode to the result of splitting it with offset ranges start offset.
if (is<Text>(*m_start_container))
reference_node = TRY(static_cast<Text&>(*m_start_container).split_text(m_start_offset));
// 8. If node is referenceNode, set referenceNode to its next sibling.
if (node == reference_node)
reference_node = reference_node->next_sibling();
// 9. If nodes parent is non-null, then remove node.
if (node->parent())
node->remove();
// 10. Let newOffset be parents length if referenceNode is null, and referenceNodes index otherwise.
size_t new_offset = 0;
if (!reference_node)
new_offset = parent->length();
else
new_offset = reference_node->index();
// 11. Increase newOffset by nodes length if node is a DocumentFragment node, and one otherwise.
if (is<DocumentFragment>(*node))
new_offset += node->length();
else
new_offset += 1;
// 12. Pre-insert node into parent before referenceNode.
(void)TRY(parent->pre_insert(node, reference_node));
// 13. If range is collapsed, then set ranges end to (parent, newOffset).
if (collapsed())
set_end(*parent, new_offset);
return {};
}
// https://dom.spec.whatwg.org/#dom-range-surroundcontents
ExceptionOr<void> Range::surround_contents(JS::NonnullGCPtr<Node> new_parent)
{
// 1. If a non-Text node is partially contained in this, then throw an "InvalidStateError" DOMException.
Node* start_non_text_node = start_container();
if (is<Text>(*start_non_text_node))
start_non_text_node = start_non_text_node->parent_node();
Node* end_non_text_node = end_container();
if (is<Text>(*end_non_text_node))
end_non_text_node = end_non_text_node->parent_node();
if (start_non_text_node != end_non_text_node)
return InvalidStateError::create("Non-Text node is partially contained in range.");
// 2. If newParent is a Document, DocumentType, or DocumentFragment node, then throw an "InvalidNodeTypeError" DOMException.
if (is<Document>(*new_parent) || is<DocumentType>(*new_parent) || is<DocumentFragment>(*new_parent))
return InvalidNodeTypeError::create("Invalid parent node type");
// 3. Let fragment be the result of extracting this.
auto fragment = TRY(extract());
// 4. If newParent has children, then replace all with null within newParent.
if (new_parent->has_children())
new_parent->replace_all(nullptr);
// 5. Insert newParent into this.
TRY(insert(new_parent));
// 6. Append fragment to newParent.
(void)TRY(new_parent->append_child(fragment));
// 7. Select newParent within this.
return select(*new_parent);
}
// https://dom.spec.whatwg.org/#dom-range-clonecontents
ExceptionOr<JS::NonnullGCPtr<DocumentFragment>> Range::clone_contents()
{
return clone_the_contents();
}
// https://dom.spec.whatwg.org/#concept-range-clone
ExceptionOr<JS::NonnullGCPtr<DocumentFragment>> Range::clone_the_contents()
{
// 1. Let fragment be a new DocumentFragment node whose node document is ranges start nodes node document.
auto* fragment = heap().allocate<DOM::DocumentFragment>(realm(), const_cast<Document&>(start_container()->document()));
// 2. If range is collapsed, then return fragment.
if (collapsed())
return JS::NonnullGCPtr(*fragment);
// 3. Let original start node, original start offset, original end node, and original end offset
// be ranges start node, start offset, end node, and end offset, respectively.
JS::NonnullGCPtr<Node> original_start_node = m_start_container;
auto original_start_offset = m_start_offset;
JS::NonnullGCPtr<Node> original_end_node = m_end_container;
auto original_end_offset = m_end_offset;
// 4. If original start node is original end node and it is a CharacterData node, then:
if (original_start_node.ptr() == original_end_node.ptr() && is<CharacterData>(*original_start_node)) {
// 1. Let clone be a clone of original start node.
auto clone = original_start_node->clone_node();
// 2. Set the data of clone to the result of substringing data with node original start node,
// offset original start offset, and count original end offset minus original start offset.
auto result = TRY(static_cast<CharacterData const&>(*original_start_node).substring_data(original_start_offset, original_end_offset - original_start_offset));
verify_cast<CharacterData>(*clone).set_data(move(result));
// 3. Append clone to fragment.
fragment->append_child(clone);
// 4. Return fragment.
return JS::NonnullGCPtr(*fragment);
}
// 5. Let common ancestor be original start node.
JS::NonnullGCPtr<Node> common_ancestor = original_start_node;
// 6. While common ancestor is not an inclusive ancestor of original end node, set common ancestor to its own parent.
while (!common_ancestor->is_inclusive_ancestor_of(original_end_node))
common_ancestor = common_ancestor->parent_node();
// 7. Let first partially contained child be null.
JS::GCPtr<Node> first_partially_contained_child;
// 8. If original start node is not an inclusive ancestor of original end node,
// set first partially contained child to the first child of common ancestor that is partially contained in range.
if (!original_start_node->is_inclusive_ancestor_of(original_end_node)) {
for (auto* child = common_ancestor->first_child(); child; child = child->next_sibling()) {
if (partially_contains_node(*child)) {
first_partially_contained_child = child;
break;
}
}
}
// 9. Let last partially contained child be null.
JS::GCPtr<Node> last_partially_contained_child;
// 10. If original end node is not an inclusive ancestor of original start node,
// set last partially contained child to the last child of common ancestor that is partially contained in range.
if (!original_end_node->is_inclusive_ancestor_of(original_start_node)) {
for (auto* child = common_ancestor->last_child(); child; child = child->previous_sibling()) {
if (partially_contains_node(*child)) {
last_partially_contained_child = child;
break;
}
}
}
// 11. Let contained children be a list of all children of common ancestor that are contained in range, in tree order.
Vector<JS::NonnullGCPtr<Node>> contained_children;
for (Node const* node = common_ancestor->first_child(); node; node = node->next_sibling()) {
if (contains_node(*node))
contained_children.append(*node);
}
// 12. If any member of contained children is a doctype, then throw a "HierarchyRequestError" DOMException.
for (auto const& child : contained_children) {
if (is<DocumentType>(*child))
return DOM::HierarchyRequestError::create("Contained child is a DocumentType");
}
// 13. If first partially contained child is a CharacterData node, then:
if (first_partially_contained_child && is<CharacterData>(*first_partially_contained_child)) {
// 1. Let clone be a clone of original start node.
auto clone = original_start_node->clone_node();
// 2. Set the data of clone to the result of substringing data with node original start node, offset original start offset,
// and count original start nodes length minus original start offset.
auto result = TRY(static_cast<CharacterData const&>(*original_start_node).substring_data(original_start_offset, original_start_node->length() - original_start_offset));
verify_cast<CharacterData>(*clone).set_data(move(result));
// 3. Append clone to fragment.
fragment->append_child(clone);
}
// 14. Otherwise, if first partially contained child is not null:
else if (first_partially_contained_child) {
// 1. Let clone be a clone of first partially contained child.
auto clone = first_partially_contained_child->clone_node();
// 2. Append clone to fragment.
fragment->append_child(clone);
// 3. Let subrange be a new live range whose start is (original start node, original start offset) and whose end is (first partially contained child, first partially contained childs length).
auto subrange = Range::create(original_start_node, original_start_offset, *first_partially_contained_child, first_partially_contained_child->length());
// 4. Let subfragment be the result of cloning the contents of subrange.
auto subfragment = TRY(subrange->clone_the_contents());
// 5. Append subfragment to clone.
clone->append_child(subfragment);
}
// 15. For each contained child in contained children.
for (auto& contained_child : contained_children) {
// 1. Let clone be a clone of contained child with the clone children flag set.
auto clone = contained_child->clone_node(nullptr, true);
// 2. Append clone to fragment.
fragment->append_child(move(clone));
}
// 16. If last partially contained child is a CharacterData node, then:
if (last_partially_contained_child && is<CharacterData>(*last_partially_contained_child)) {
// 1. Let clone be a clone of original end node.
auto clone = original_end_node->clone_node();
// 2. Set the data of clone to the result of substringing data with node original end node, offset 0, and count original end offset.
auto result = TRY(static_cast<CharacterData const&>(*original_end_node).substring_data(0, original_end_offset));
verify_cast<CharacterData>(*clone).set_data(move(result));
// 3. Append clone to fragment.
fragment->append_child(clone);
}
// 17. Otherwise, if last partially contained child is not null:
else if (last_partially_contained_child) {
// 1. Let clone be a clone of last partially contained child.
auto clone = last_partially_contained_child->clone_node();
// 2. Append clone to fragment.
fragment->append_child(clone);
// 3. Let subrange be a new live range whose start is (last partially contained child, 0) and whose end is (original end node, original end offset).
auto subrange = Range::create(*last_partially_contained_child, 0, original_end_node, original_end_offset);
// 4. Let subfragment be the result of cloning the contents of subrange.
auto subfragment = TRY(subrange->clone_the_contents());
// 5. Append subfragment to clone.
clone->append_child(subfragment);
}
// 18. Return fragment.
return JS::NonnullGCPtr(*fragment);
}
// https://dom.spec.whatwg.org/#dom-range-deletecontents
ExceptionOr<void> Range::delete_contents()
{
// 1. If this is collapsed, then return.
if (collapsed())
return {};
// 2. Let original start node, original start offset, original end node, and original end offset be thiss start node, start offset, end node, and end offset, respectively.
JS::NonnullGCPtr<Node> original_start_node = m_start_container;
auto original_start_offset = m_start_offset;
JS::NonnullGCPtr<Node> original_end_node = m_end_container;
auto original_end_offset = m_end_offset;
// 3. If original start node is original end node and it is a CharacterData node, then replace data with node original start node, offset original start offset,
// count original end offset minus original start offset, and data the empty string, and then return.
if (original_start_node.ptr() == original_end_node.ptr() && is<CharacterData>(*original_start_node)) {
TRY(static_cast<CharacterData&>(*original_start_node).replace_data(original_start_offset, original_end_offset - original_start_offset, ""));
return {};
}
// 4. Let nodes to remove be a list of all the nodes that are contained in this, in tree order, omitting any node whose parent is also contained in this.
JS::MarkedVector<Node*> nodes_to_remove(heap());
for (Node const* node = start_container(); node != end_container()->next_in_pre_order(); node = node->next_in_pre_order()) {
if (contains_node(*node) && (!node->parent_node() || !contains_node(*node->parent_node())))
nodes_to_remove.append(const_cast<Node*>(node));
}
JS::GCPtr<Node> new_node;
size_t new_offset = 0;
// 5. If original start node is an inclusive ancestor of original end node, set new node to original start node and new offset to original start offset.
if (original_start_node->is_inclusive_ancestor_of(original_end_node)) {
new_node = original_start_node;
new_offset = original_start_offset;
}
// 6. Otherwise
else {
// 1. Let reference node equal original start node.
auto reference_node = original_start_node;
// 2. While reference nodes parent is not null and is not an inclusive ancestor of original end node, set reference node to its parent.
while (reference_node->parent_node() && !reference_node->parent_node()->is_inclusive_ancestor_of(original_end_node))
reference_node = reference_node->parent_node();
// 3. Set new node to the parent of reference node, and new offset to one plus the index of reference node.
new_node = reference_node->parent_node();
new_offset = 1 + reference_node->index();
}
// 7. If original start node is a CharacterData node, then replace data with node original start node, offset original start offset, count original start nodes length minus original start offset, data the empty string.
if (is<CharacterData>(*original_start_node))
TRY(static_cast<CharacterData&>(*original_start_node).replace_data(original_start_offset, original_start_node->length() - original_start_offset, ""));
// 8. For each node in nodes to remove, in tree order, remove node.
for (auto& node : nodes_to_remove)
node->remove();
// 9. If original end node is a CharacterData node, then replace data with node original end node, offset 0, count original end offset and data the empty string.
if (is<CharacterData>(*original_end_node))
TRY(static_cast<CharacterData&>(*original_end_node).replace_data(0, original_end_offset, ""));
// 10. Set start and end to (new node, new offset).
set_start(*new_node, new_offset);
set_end(*new_node, new_offset);
return {};
}
}