ladybird/Userland/Libraries/LibJS/AST.cpp
Linus Groh 038d354b5d LibJS: Remove Object::value_of()
Being really close to Object.prototype.valueOf() name wise makes this
unnecessarily confusing - while it sometimes serves as the
implementation of a valueOf() function, it's an abstraction which the
spec doesn't have.
Use the appropriate getters to retrieve specific internal slots instead,
most commonly [[FooData]] from the primitive wrapper objects.
For the Object class specifically, use the Value(Object*) ctor instead.
2021-12-10 22:52:36 +00:00

3743 lines
140 KiB
C++

/*
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020-2021, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, David Tuin <davidot@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Demangle.h>
#include <AK/HashMap.h>
#include <AK/HashTable.h>
#include <AK/ScopeGuard.h>
#include <AK/StringBuilder.h>
#include <AK/TemporaryChange.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibJS/AST.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Accessor.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/FunctionEnvironment.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/IteratorOperations.h>
#include <LibJS/Runtime/MarkedValueList.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/ObjectEnvironment.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <LibJS/Runtime/PromiseConstructor.h>
#include <LibJS/Runtime/PromiseReaction.h>
#include <LibJS/Runtime/Reference.h>
#include <LibJS/Runtime/RegExpObject.h>
#include <LibJS/Runtime/Shape.h>
#include <typeinfo>
namespace JS {
class InterpreterNodeScope {
AK_MAKE_NONCOPYABLE(InterpreterNodeScope);
AK_MAKE_NONMOVABLE(InterpreterNodeScope);
public:
InterpreterNodeScope(Interpreter& interpreter, ASTNode const& node)
: m_interpreter(interpreter)
, m_chain_node { nullptr, node }
{
m_interpreter.vm().running_execution_context().current_node = &node;
m_interpreter.push_ast_node(m_chain_node);
}
~InterpreterNodeScope()
{
m_interpreter.pop_ast_node();
}
private:
Interpreter& m_interpreter;
ExecutingASTNodeChain m_chain_node;
};
String ASTNode::class_name() const
{
// NOTE: We strip the "JS::" prefix.
return demangle(typeid(*this).name()).substring(4);
}
static void update_function_name(Value value, FlyString const& name)
{
if (!value.is_function())
return;
auto& function = value.as_function();
if (is<ECMAScriptFunctionObject>(function) && function.name().is_empty())
static_cast<ECMAScriptFunctionObject&>(function).set_name(name);
}
static ThrowCompletionOr<String> get_function_name(GlobalObject& global_object, Value value)
{
if (value.is_symbol())
return String::formatted("[{}]", value.as_symbol().description());
if (value.is_string())
return value.as_string().string();
return value.to_string(global_object);
}
Value ScopeNode::evaluate_statements(Interpreter& interpreter, GlobalObject& global_object) const
{
// FIXME: This should use completions but for now we just use the vm to communicate things.
auto& vm = interpreter.vm();
Value last_value;
for (auto& node : children()) {
auto value = node.execute(interpreter, global_object);
if (!value.is_empty())
last_value = value;
if (vm.should_unwind()) {
break;
}
}
return last_value;
}
Value FunctionBody::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// Note: Scoping should have already been setup by whoever is calling this FunctionBody.
auto function_result = evaluate_statements(interpreter, global_object);
if (interpreter.exception())
return {};
if (interpreter.vm().unwind_until() != ScopeType::Function)
function_result = js_undefined();
else
interpreter.vm().stop_unwind();
return function_result;
}
// 14.2.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
Value BlockStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto& vm = interpreter.vm();
Environment* old_environment { nullptr };
ArmedScopeGuard restore_environment = [&] {
vm.running_execution_context().lexical_environment = old_environment;
};
// Optimization: We only need a new lexical environment if there are any lexical declarations. :^)
if (has_lexical_declarations()) {
old_environment = vm.running_execution_context().lexical_environment;
auto* block_environment = new_declarative_environment(*old_environment);
block_declaration_instantiation(global_object, block_environment);
vm.running_execution_context().lexical_environment = block_environment;
} else {
restore_environment.disarm();
}
auto block_value = evaluate_statements(interpreter, global_object);
if (!labels().is_empty() && vm.should_unwind_until(ScopeType::Breakable, labels()))
vm.stop_unwind();
if (vm.exception())
return {};
return block_value;
}
Value Program::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
// FIXME: This tries to be "ScriptEvaluation" and "evaluating scriptBody" at once. It shouldn't.
// Clean this up and update perform_eval() / perform_shadow_realm_eval()
InterpreterNodeScope node_scope { interpreter, *this };
VERIFY(interpreter.lexical_environment() && interpreter.lexical_environment()->is_global_environment());
auto& global_env = static_cast<GlobalEnvironment&>(*interpreter.lexical_environment());
TRY_OR_DISCARD(global_declaration_instantiation(interpreter, global_object, global_env));
return evaluate_statements(interpreter, global_object);
}
Value FunctionDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
if (m_is_hoisted) {
// Perform special annexB steps see step 3 of: https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
auto* variable_environment = interpreter.vm().running_execution_context().variable_environment;
auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment;
auto function_object = MUST(lexical_environment->get_binding_value(global_object, name(), false));
MUST(variable_environment->set_mutable_binding(global_object, name(), function_object, false));
}
return {};
}
Value FunctionExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
return instantiate_ordinary_function_expression(interpreter, global_object, name());
}
// 15.2.5 Runtime Semantics: InstantiateOrdinaryFunctionExpression, https://tc39.es/ecma262/#sec-runtime-semantics-instantiateordinaryfunctionexpression
Value FunctionExpression::instantiate_ordinary_function_expression(Interpreter& interpreter, GlobalObject& global_object, FlyString given_name) const
{
if (given_name.is_empty())
given_name = "";
auto has_own_name = !name().is_empty();
auto const& used_name = has_own_name ? name() : given_name;
auto* scope = interpreter.lexical_environment();
if (has_own_name) {
VERIFY(scope);
scope = new_declarative_environment(*scope);
MUST(scope->create_immutable_binding(global_object, name(), false));
}
auto* private_scope = interpreter.vm().running_execution_context().private_environment;
auto closure = ECMAScriptFunctionObject::create(global_object, used_name, body(), parameters(), function_length(), scope, private_scope, kind(), is_strict_mode(), might_need_arguments_object(), contains_direct_call_to_eval(), is_arrow_function());
// FIXME: 6. Perform SetFunctionName(closure, name).
// FIXME: 7. Perform MakeConstructor(closure).
if (has_own_name)
MUST(scope->initialize_binding(global_object, name(), closure));
return closure;
}
Value ExpressionStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
return m_expression->execute(interpreter, global_object);
}
CallExpression::ThisAndCallee CallExpression::compute_this_and_callee(Interpreter& interpreter, GlobalObject& global_object, Reference const& callee_reference) const
{
if (callee_reference.is_property_reference()) {
auto this_value = callee_reference.get_this_value();
auto callee = TRY_OR_DISCARD(callee_reference.get_value(global_object));
return { this_value, callee };
}
// [[Call]] will handle that in non-strict mode the this value becomes the global object
return {
js_undefined(),
callee_reference.is_unresolvable()
? m_callee->execute(interpreter, global_object)
: TRY_OR_DISCARD(callee_reference.get_value(global_object))
};
}
// 13.3.8.1 Runtime Semantics: ArgumentListEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
static void argument_list_evaluation(Interpreter& interpreter, GlobalObject& global_object, Vector<CallExpression::Argument> const& arguments, MarkedValueList& list)
{
auto& vm = global_object.vm();
list.ensure_capacity(arguments.size());
for (auto& argument : arguments) {
auto value = argument.value->execute(interpreter, global_object);
if (vm.exception())
return;
if (argument.is_spread) {
auto result = get_iterator_values(global_object, value, [&](Value iterator_value) -> Optional<Completion> {
list.append(iterator_value);
return {};
});
if (result.is_error())
return;
} else {
list.append(value);
}
}
}
Value NewExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto& vm = interpreter.vm();
auto callee_value = m_callee->execute(interpreter, global_object);
if (vm.exception())
return {};
if (!callee_value.is_function() || !callee_value.as_function().has_constructor()) {
throw_type_error_for_callee(interpreter, global_object, callee_value, "constructor"sv);
return {};
}
MarkedValueList arg_list(vm.heap());
argument_list_evaluation(interpreter, global_object, m_arguments, arg_list);
if (interpreter.exception())
return {};
auto& function = callee_value.as_function();
return TRY_OR_DISCARD(construct(global_object, function, move(arg_list)));
}
void CallExpression::throw_type_error_for_callee(Interpreter& interpreter, GlobalObject& global_object, Value callee_value, StringView call_type) const
{
auto& vm = interpreter.vm();
if (is<Identifier>(*m_callee) || is<MemberExpression>(*m_callee)) {
String expression_string;
if (is<Identifier>(*m_callee)) {
expression_string = static_cast<Identifier const&>(*m_callee).string();
} else {
expression_string = static_cast<MemberExpression const&>(*m_callee).to_string_approximation();
}
vm.throw_exception<TypeError>(global_object, ErrorType::IsNotAEvaluatedFrom, callee_value.to_string_without_side_effects(), call_type, expression_string);
} else {
vm.throw_exception<TypeError>(global_object, ErrorType::IsNotA, callee_value.to_string_without_side_effects(), call_type);
}
}
Value CallExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto& vm = interpreter.vm();
auto callee_reference = m_callee->to_reference(interpreter, global_object);
if (vm.exception())
return {};
auto [this_value, callee] = compute_this_and_callee(interpreter, global_object, callee_reference);
if (vm.exception())
return {};
VERIFY(!callee.is_empty());
MarkedValueList arg_list(vm.heap());
argument_list_evaluation(interpreter, global_object, m_arguments, arg_list);
if (interpreter.exception())
return {};
if (!callee.is_function()) {
throw_type_error_for_callee(interpreter, global_object, callee, "function"sv);
return {};
}
auto& function = callee.as_function();
if (&function == global_object.eval_function()
&& callee_reference.is_environment_reference()
&& callee_reference.name().is_string()
&& callee_reference.name().as_string() == vm.names.eval.as_string()) {
auto script_value = arg_list.size() == 0 ? js_undefined() : arg_list[0];
return TRY_OR_DISCARD(perform_eval(script_value, global_object, vm.in_strict_mode() ? CallerMode::Strict : CallerMode::NonStrict, EvalMode::Direct));
}
return TRY_OR_DISCARD(vm.call(function, this_value, move(arg_list)));
}
// 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
// SuperCall : super Arguments
Value SuperCall::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto& vm = interpreter.vm();
// 1. Let newTarget be GetNewTarget().
auto new_target = vm.get_new_target();
if (vm.exception())
return {};
// 2. Assert: Type(newTarget) is Object.
VERIFY(new_target.is_function());
// 3. Let func be ! GetSuperConstructor().
auto* func = get_super_constructor(interpreter.vm());
VERIFY(!vm.exception());
// 4. Let argList be ? ArgumentListEvaluation of Arguments.
MarkedValueList arg_list(vm.heap());
argument_list_evaluation(interpreter, global_object, m_arguments, arg_list);
if (interpreter.exception())
return {};
// 5. If IsConstructor(func) is false, throw a TypeError exception.
if (!func || !Value(func).is_constructor()) {
vm.throw_exception<TypeError>(global_object, ErrorType::NotAConstructor, "Super constructor");
return {};
}
// 6. Let result be ? Construct(func, argList, newTarget).
auto* result = TRY_OR_DISCARD(construct(global_object, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
// 7. Let thisER be GetThisEnvironment().
auto& this_er = verify_cast<FunctionEnvironment>(get_this_environment(interpreter.vm()));
// 8. Perform ? thisER.BindThisValue(result).
TRY_OR_DISCARD(this_er.bind_this_value(global_object, result));
// 9. Let F be thisER.[[FunctionObject]].
// 10. Assert: F is an ECMAScript function object. (NOTE: This is implied by the strong C++ type.)
[[maybe_unused]] auto& f = this_er.function_object();
// 11. Perform ? InitializeInstanceElements(result, F).
TRY_OR_DISCARD(vm.initialize_instance_elements(*result, f));
// 12. Return result.
return result;
}
Value YieldExpression::execute(Interpreter&, GlobalObject&) const
{
// This should be transformed to a return.
VERIFY_NOT_REACHED();
}
// 15.8.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-async-function-definitions-runtime-semantics-evaluation
Value AwaitExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// 1. Let exprRef be the result of evaluating UnaryExpression.
// 2. Let value be ? GetValue(exprRef).
auto value = m_argument->execute(interpreter, global_object);
if (interpreter.exception())
return {};
// 3. Return ? Await(value).
return TRY_OR_DISCARD(await(global_object, value));
}
Value ReturnStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto value = argument() ? argument()->execute(interpreter, global_object) : js_undefined();
if (interpreter.exception())
return {};
interpreter.vm().unwind(ScopeType::Function);
return value;
}
Value IfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto predicate_result = m_predicate->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (predicate_result.to_boolean())
return m_consequent->execute(interpreter, global_object);
if (m_alternate)
return m_alternate->execute(interpreter, global_object);
return js_undefined();
}
// 14.11.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-with-statement-runtime-semantics-evaluation
// WithStatement : with ( Expression ) Statement
Value WithStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// 1. Let value be the result of evaluating Expression.
auto value = m_object->execute(interpreter, global_object);
if (interpreter.exception())
return {};
// 2. Let obj be ? ToObject(? GetValue(value)).
auto* object = TRY_OR_DISCARD(value.to_object(global_object));
// 3. Let oldEnv be the running execution context's LexicalEnvironment.
auto* old_environment = interpreter.vm().running_execution_context().lexical_environment;
// 4. Let newEnv be NewObjectEnvironment(obj, true, oldEnv).
auto* new_environment = new_object_environment(*object, true, old_environment);
if (interpreter.exception())
return {};
// 5. Set the running execution context's LexicalEnvironment to newEnv.
interpreter.vm().running_execution_context().lexical_environment = new_environment;
// 6. Let C be the result of evaluating Statement.
auto result = m_body->execute(interpreter, global_object).value_or(js_undefined());
// 7. Set the running execution context's LexicalEnvironment to oldEnv.
interpreter.vm().running_execution_context().lexical_environment = old_environment;
if (interpreter.exception())
return {};
// 8. Return Completion(UpdateEmpty(C, undefined)).
return result;
}
Value WhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto last_value = js_undefined();
for (;;) {
auto test_result = m_test->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!test_result.to_boolean())
break;
last_value = m_body->execute(interpreter, global_object).value_or(last_value);
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) {
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) {
interpreter.vm().stop_unwind();
break;
} else {
return last_value;
}
}
}
return last_value;
}
Value DoWhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto last_value = js_undefined();
for (;;) {
if (interpreter.exception())
return {};
last_value = m_body->execute(interpreter, global_object).value_or(last_value);
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) {
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) {
interpreter.vm().stop_unwind();
break;
} else {
return last_value;
}
}
auto test_result = m_test->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!test_result.to_boolean())
break;
}
return last_value;
}
Value ForStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// Note we don't always set a new environment but to use RAII we must do this here.
auto* old_environment = interpreter.lexical_environment();
ScopeGuard restore_old_environment = [&] {
interpreter.vm().running_execution_context().lexical_environment = old_environment;
};
Vector<FlyString> let_declarations;
if (m_init) {
if (is<VariableDeclaration>(*m_init) && static_cast<VariableDeclaration const&>(*m_init).declaration_kind() != DeclarationKind::Var) {
auto* loop_environment = new_declarative_environment(*old_environment);
auto& declaration = static_cast<VariableDeclaration const&>(*m_init);
declaration.for_each_bound_name([&](auto const& name) {
if (declaration.declaration_kind() == DeclarationKind::Const) {
MUST(loop_environment->create_immutable_binding(global_object, name, true));
} else {
MUST(loop_environment->create_mutable_binding(global_object, name, false));
let_declarations.append(name);
}
return IterationDecision::Continue;
});
interpreter.vm().running_execution_context().lexical_environment = loop_environment;
}
m_init->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
auto last_value = js_undefined();
// 14.7.4.4 CreatePerIterationEnvironment ( perIterationBindings ), https://tc39.es/ecma262/#sec-createperiterationenvironment
auto create_per_iteration_environment = [&]() -> ThrowCompletionOr<void> {
if (let_declarations.is_empty())
return {};
auto* last_iteration_env = interpreter.lexical_environment();
auto* outer = last_iteration_env->outer_environment();
VERIFY(outer);
auto* this_iteration_env = new_declarative_environment(*outer);
for (auto& name : let_declarations) {
MUST(this_iteration_env->create_mutable_binding(global_object, name, false));
auto last_value = TRY(last_iteration_env->get_binding_value(global_object, name, true));
VERIFY(!last_value.is_empty());
MUST(this_iteration_env->initialize_binding(global_object, name, last_value));
}
interpreter.vm().running_execution_context().lexical_environment = this_iteration_env;
return {};
};
TRY_OR_DISCARD(create_per_iteration_environment());
auto test_empty_or_true = [&] {
if (!m_test)
return true;
auto test_result = m_test->execute(interpreter, global_object);
if (interpreter.exception())
return false;
return test_result.to_boolean();
};
while (true) {
if (!test_empty_or_true())
break;
last_value = m_body->execute(interpreter, global_object).value_or(last_value);
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) {
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) {
interpreter.vm().stop_unwind();
break;
} else {
return last_value;
}
}
TRY_OR_DISCARD(create_per_iteration_environment());
if (m_update) {
m_update->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
}
if (interpreter.exception())
return {};
return last_value;
}
struct ForInOfHeadState {
explicit ForInOfHeadState(Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> lhs)
{
lhs.visit(
[&](NonnullRefPtr<ASTNode>& ast_node) {
expression_lhs = ast_node.ptr();
},
[&](NonnullRefPtr<BindingPattern>& pattern) {
pattern_lhs = pattern.ptr();
destructuring = true;
lhs_kind = Assignment;
});
}
ASTNode* expression_lhs = nullptr;
BindingPattern* pattern_lhs = nullptr;
enum LhsKind {
Assignment,
VarBinding,
LexicalBinding
};
LhsKind lhs_kind = Assignment;
bool destructuring = false;
Value rhs_value;
// 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
// Note: This is only steps 6.g through 6.j of the method because we currently implement for-in without an iterator so to prevent duplicated code we do this part here.
ThrowCompletionOr<void> execute_head(Interpreter& interpreter, GlobalObject& global_object, Value next_value) const
{
VERIFY(!next_value.is_empty());
Optional<Reference> lhs_reference;
Environment* iteration_environment = nullptr;
// g. If lhsKind is either assignment or varBinding, then
if (lhs_kind == Assignment || lhs_kind == VarBinding) {
if (!destructuring) {
VERIFY(expression_lhs);
if (is<VariableDeclaration>(*expression_lhs)) {
auto& declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
VERIFY(declaration.declarations().first().target().has<NonnullRefPtr<Identifier>>());
lhs_reference = declaration.declarations().first().target().get<NonnullRefPtr<Identifier>>()->to_reference(interpreter, global_object);
} else {
VERIFY(is<Identifier>(*expression_lhs) || is<MemberExpression>(*expression_lhs));
auto& expression = static_cast<Expression const&>(*expression_lhs);
lhs_reference = expression.to_reference(interpreter, global_object);
}
}
}
// h. Else,
else {
VERIFY(expression_lhs && is<VariableDeclaration>(*expression_lhs));
iteration_environment = new_declarative_environment(*interpreter.lexical_environment());
auto& for_declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
for_declaration.for_each_bound_name([&](auto const& name) {
if (for_declaration.declaration_kind() == DeclarationKind::Const)
MUST(iteration_environment->create_immutable_binding(global_object, name, false));
else
MUST(iteration_environment->create_mutable_binding(global_object, name, true));
});
interpreter.vm().running_execution_context().lexical_environment = iteration_environment;
if (!destructuring) {
VERIFY(for_declaration.declarations().first().target().has<NonnullRefPtr<Identifier>>());
lhs_reference = interpreter.vm().resolve_binding(for_declaration.declarations().first().target().get<NonnullRefPtr<Identifier>>()->string());
}
}
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
// i. If destructuring is false, then
if (!destructuring) {
VERIFY(lhs_reference.has_value());
if (lhs_kind == LexicalBinding)
return lhs_reference->initialize_referenced_binding(global_object, next_value);
else
return lhs_reference->put_value(global_object, next_value);
}
// j. Else,
if (lhs_kind == Assignment) {
VERIFY(pattern_lhs);
return interpreter.vm().destructuring_assignment_evaluation(*pattern_lhs, next_value, global_object);
}
VERIFY(expression_lhs && is<VariableDeclaration>(*expression_lhs));
auto& for_declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
auto& binding_pattern = for_declaration.declarations().first().target().get<NonnullRefPtr<BindingPattern>>();
VERIFY(lhs_kind == VarBinding || iteration_environment);
// At this point iteration_environment is undefined if lhs_kind == VarBinding which means this does both
// branch j.ii and j.iii because ForBindingInitialization is just a forwarding call to BindingInitialization.
return interpreter.vm().binding_initialization(binding_pattern, next_value, iteration_environment, global_object);
}
};
// 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
// This method combines ForInOfLoopEvaluation and ForIn/OfHeadEvaluation for similar reason as ForIn/OfBodyEvaluation, to prevent code duplication.
// For the same reason we also skip step 6 and 7 of ForIn/OfHeadEvaluation as this is done by the appropriate for loop type.
static ThrowCompletionOr<ForInOfHeadState> for_in_of_head_execute(Interpreter& interpreter, GlobalObject& global_object, Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> lhs, Expression const& rhs)
{
ForInOfHeadState state(lhs);
if (auto* ast_ptr = lhs.get_pointer<NonnullRefPtr<ASTNode>>(); ast_ptr && is<VariableDeclaration>(*(*ast_ptr))) {
// Runtime Semantics: ForInOfLoopEvaluation, for any of:
// ForInOfStatement : for ( var ForBinding in Expression ) Statement
// ForInOfStatement : for ( ForDeclaration in Expression ) Statement
// ForInOfStatement : for ( var ForBinding of AssignmentExpression ) Statement
// ForInOfStatement : for ( ForDeclaration of AssignmentExpression ) Statement
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
Environment* new_environment = nullptr;
auto& variable_declaration = static_cast<VariableDeclaration const&>(*(*ast_ptr));
VERIFY(variable_declaration.declarations().size() == 1);
state.destructuring = variable_declaration.declarations().first().target().has<NonnullRefPtr<BindingPattern>>();
if (variable_declaration.declaration_kind() == DeclarationKind::Var) {
state.lhs_kind = ForInOfHeadState::VarBinding;
auto& variable = variable_declaration.declarations().first();
// B.3.5 Initializers in ForIn Statement Heads, https://tc39.es/ecma262/#sec-initializers-in-forin-statement-heads
if (variable.init()) {
VERIFY(variable.target().has<NonnullRefPtr<Identifier>>());
auto& binding_id = variable.target().get<NonnullRefPtr<Identifier>>()->string();
auto reference = interpreter.vm().resolve_binding(binding_id);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
auto result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(global_object, *variable.init(), binding_id));
TRY(reference.put_value(global_object, result));
}
} else {
state.lhs_kind = ForInOfHeadState::LexicalBinding;
new_environment = new_declarative_environment(*interpreter.lexical_environment());
variable_declaration.for_each_bound_name([&](auto const& name) {
MUST(new_environment->create_mutable_binding(global_object, name, false));
});
}
if (new_environment) {
// 2.d Set the running execution context's LexicalEnvironment to newEnv.
TemporaryChange<Environment*> scope_change(interpreter.vm().running_execution_context().lexical_environment, new_environment);
// 3. Let exprRef be the result of evaluating expr.
// 5. Let exprValue be ? GetValue(exprRef).
state.rhs_value = rhs.execute(interpreter, global_object);
// Note that since a reference stores it's environment it doesn't matter we only reset
// this after step 5. (Also we have no way of separating these steps at this point)
// 4. Set the running execution context's LexicalEnvironment to oldEnv.
} else {
// 3. Let exprRef be the result of evaluating expr.
// 5. Let exprValue be ? GetValue(exprRef).
state.rhs_value = rhs.execute(interpreter, global_object);
}
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
return state;
}
// Runtime Semantics: ForInOfLoopEvaluation, for any of:
// ForInOfStatement : for ( LeftHandSideExpression in Expression ) Statement
// ForInOfStatement : for ( LeftHandSideExpression of AssignmentExpression ) Statement
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
// We can skip step 1, 2 and 4 here (on top of already skipping step 6 and 7).
// 3. Let exprRef be the result of evaluating expr.
// 5. Let exprValue be ? GetValue(exprRef).
state.rhs_value = rhs.execute(interpreter, global_object);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
return state;
}
Value ForInStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto for_in_head_state = TRY_OR_DISCARD(for_in_of_head_execute(interpreter, global_object, m_lhs, *m_rhs));
auto rhs_result = for_in_head_state.rhs_value;
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
if (rhs_result.is_nullish())
return js_undefined();
auto* object = MUST(rhs_result.to_object(global_object));
// 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
Environment* old_environment = interpreter.lexical_environment();
auto restore_scope = ScopeGuard([&] {
interpreter.vm().running_execution_context().lexical_environment = old_environment;
});
auto last_value = js_undefined();
while (object) {
auto property_names = TRY_OR_DISCARD(object->enumerable_own_property_names(Object::PropertyKind::Key));
for (auto& value : property_names) {
TRY_OR_DISCARD(for_in_head_state.execute_head(interpreter, global_object, value));
last_value = m_body->execute(interpreter, global_object).value_or(last_value);
interpreter.vm().running_execution_context().lexical_environment = old_environment;
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) {
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) {
interpreter.vm().stop_unwind();
break;
} else {
return last_value;
}
}
}
object = TRY_OR_DISCARD(object->internal_get_prototype_of());
}
return last_value;
}
Value ForOfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto for_of_head_state = TRY_OR_DISCARD(for_in_of_head_execute(interpreter, global_object, m_lhs, m_rhs));
auto rhs_result = for_of_head_state.rhs_value;
auto last_value = js_undefined();
// 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
// We use get_iterator_values which behaves like ForIn/OfBodyEvaluation with iteratorKind iterate.
Environment* old_environment = interpreter.lexical_environment();
auto restore_scope = ScopeGuard([&] {
interpreter.vm().running_execution_context().lexical_environment = old_environment;
});
TRY_OR_DISCARD(get_iterator_values(global_object, rhs_result, [&](Value value) -> Optional<Completion> {
TRY(for_of_head_state.execute_head(interpreter, global_object, value));
last_value = m_body->execute(interpreter, global_object).value_or(last_value);
interpreter.vm().running_execution_context().lexical_environment = old_environment;
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) {
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) {
interpreter.vm().stop_unwind();
return normal_completion(last_value);
} else {
return normal_completion(last_value);
}
}
return {};
}));
return last_value;
}
Value ForAwaitOfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
// Note: Performs only steps 1 through 5.
auto for_of_head_state = TRY_OR_DISCARD(for_in_of_head_execute(interpreter, global_object, m_lhs, m_rhs));
auto rhs_result = for_of_head_state.rhs_value;
// NOTE: Perform step 7 from ForIn/OfHeadEvaluation. And since this is always async we only have to do step 7.d.
// d. Return ? GetIterator(exprValue, iteratorHint).
auto* iterator = TRY_OR_DISCARD(get_iterator(global_object, rhs_result, IteratorHint::Async));
VERIFY(iterator);
auto& vm = interpreter.vm();
// 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
// NOTE: Here iteratorKind is always async.
// 2. Let oldEnv be the running execution context's LexicalEnvironment.
Environment* old_environment = interpreter.lexical_environment();
auto restore_scope = ScopeGuard([&] {
interpreter.vm().running_execution_context().lexical_environment = old_environment;
});
// 3. Let V be undefined.
auto last_value = js_undefined();
// NOTE: Step 4 and 5 are just extracting properties from the head which is done already in for_in_of_head_execute.
// And these are only used in step 6.g through 6.k which is done with for_of_head_state.execute_head.
// 6. Repeat,
while (true) {
// NOTE: Since we don't have iterator records yet we have to extract the function first.
auto next_method = TRY_OR_DISCARD(iterator->get(vm.names.next));
if (!next_method.is_function()) {
vm.throw_exception<TypeError>(global_object, ErrorType::IterableNextNotAFunction);
return {};
}
// a. Let nextResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]]).
auto next_result = TRY_OR_DISCARD(call(global_object, next_method, iterator));
// b. If iteratorKind is async, set nextResult to ? Await(nextResult).
next_result = TRY_OR_DISCARD(await(global_object, next_result));
// c. If Type(nextResult) is not Object, throw a TypeError exception.
if (!next_result.is_object()) {
vm.throw_exception<TypeError>(global_object, ErrorType::IterableNextBadReturn);
return {};
}
// d. Let done be ? IteratorComplete(nextResult).
auto done = TRY_OR_DISCARD(iterator_complete(global_object, next_result.as_object()));
// e. If done is true, return NormalCompletion(V).
if (done)
return last_value;
// f. Let nextValue be ? IteratorValue(nextResult).
auto next_value = TRY_OR_DISCARD(iterator_value(global_object, next_result.as_object()));
// NOTE: This performs steps g. through to k.
TRY_OR_DISCARD(for_of_head_state.execute_head(interpreter, global_object, next_value));
// l. Let result be the result of evaluating stmt.
auto result = m_body->execute(interpreter, global_object);
// m. Set the running execution context's LexicalEnvironment to oldEnv.
interpreter.vm().running_execution_context().lexical_environment = old_environment;
// NOTE: Since execute does not return a completion we have to have a number of checks here.
// n. If LoopContinues(result, labelSet) is false, then
if (auto* exception = vm.exception()) {
// FIXME: We should return the result of AsyncIteratorClose but cannot return completions yet.
// 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).
TRY_OR_DISCARD(async_iterator_close(*iterator, throw_completion(exception->value())));
return {};
}
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) {
// NOTE: In this case LoopContinues is not actually false so we don't perform step 6.n.ii.3.
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) {
interpreter.vm().stop_unwind();
// 2. Set status to UpdateEmpty(result, V).
if (!result.is_empty())
last_value = result;
// 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).
TRY_OR_DISCARD(async_iterator_close(*iterator, normal_completion(last_value)));
return last_value;
} else {
// 2. Set status to UpdateEmpty(result, V).
if (!result.is_empty())
last_value = result;
// 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).
TRY_OR_DISCARD(async_iterator_close(*iterator, normal_completion(last_value)));
return last_value;
}
}
// o. If result.[[Value]] is not empty, set V to result.[[Value]].
if (!result.is_empty())
last_value = result;
}
VERIFY_NOT_REACHED();
}
Value BinaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// Special case in which we cannot execute the lhs. RelationalExpression : PrivateIdentifier in ShiftExpression
// RelationalExpression : PrivateIdentifier in ShiftExpression, https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation
if (m_op == BinaryOp::In && is<PrivateIdentifier>(*m_lhs)) {
auto& private_identifier = static_cast<PrivateIdentifier const&>(*m_lhs).string();
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!rhs_result.is_object()) {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::InOperatorWithObject);
return {};
}
auto* private_environment = interpreter.vm().running_execution_context().private_environment;
VERIFY(private_environment);
auto private_name = private_environment->resolve_private_identifier(private_identifier);
return Value(rhs_result.as_object().private_element_find(private_name) != nullptr);
}
auto lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
switch (m_op) {
case BinaryOp::Addition:
return TRY_OR_DISCARD(add(global_object, lhs_result, rhs_result));
case BinaryOp::Subtraction:
return TRY_OR_DISCARD(sub(global_object, lhs_result, rhs_result));
case BinaryOp::Multiplication:
return TRY_OR_DISCARD(mul(global_object, lhs_result, rhs_result));
case BinaryOp::Division:
return TRY_OR_DISCARD(div(global_object, lhs_result, rhs_result));
case BinaryOp::Modulo:
return TRY_OR_DISCARD(mod(global_object, lhs_result, rhs_result));
case BinaryOp::Exponentiation:
return TRY_OR_DISCARD(exp(global_object, lhs_result, rhs_result));
case BinaryOp::StrictlyEquals:
return Value(is_strictly_equal(lhs_result, rhs_result));
case BinaryOp::StrictlyInequals:
return Value(!is_strictly_equal(lhs_result, rhs_result));
case BinaryOp::LooselyEquals:
return Value(TRY_OR_DISCARD(is_loosely_equal(global_object, lhs_result, rhs_result)));
case BinaryOp::LooselyInequals:
return Value(!TRY_OR_DISCARD(is_loosely_equal(global_object, lhs_result, rhs_result)));
case BinaryOp::GreaterThan:
return TRY_OR_DISCARD(greater_than(global_object, lhs_result, rhs_result));
case BinaryOp::GreaterThanEquals:
return TRY_OR_DISCARD(greater_than_equals(global_object, lhs_result, rhs_result));
case BinaryOp::LessThan:
return TRY_OR_DISCARD(less_than(global_object, lhs_result, rhs_result));
case BinaryOp::LessThanEquals:
return TRY_OR_DISCARD(less_than_equals(global_object, lhs_result, rhs_result));
case BinaryOp::BitwiseAnd:
return TRY_OR_DISCARD(bitwise_and(global_object, lhs_result, rhs_result));
case BinaryOp::BitwiseOr:
return TRY_OR_DISCARD(bitwise_or(global_object, lhs_result, rhs_result));
case BinaryOp::BitwiseXor:
return TRY_OR_DISCARD(bitwise_xor(global_object, lhs_result, rhs_result));
case BinaryOp::LeftShift:
return TRY_OR_DISCARD(left_shift(global_object, lhs_result, rhs_result));
case BinaryOp::RightShift:
return TRY_OR_DISCARD(right_shift(global_object, lhs_result, rhs_result));
case BinaryOp::UnsignedRightShift:
return TRY_OR_DISCARD(unsigned_right_shift(global_object, lhs_result, rhs_result));
case BinaryOp::In:
return TRY_OR_DISCARD(in(global_object, lhs_result, rhs_result));
case BinaryOp::InstanceOf:
return TRY_OR_DISCARD(instance_of(global_object, lhs_result, rhs_result));
}
VERIFY_NOT_REACHED();
}
Value LogicalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
switch (m_op) {
case LogicalOp::And:
if (lhs_result.to_boolean()) {
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
case LogicalOp::Or: {
if (lhs_result.to_boolean())
return lhs_result;
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return rhs_result;
}
case LogicalOp::NullishCoalescing:
if (lhs_result.is_nullish()) {
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
}
VERIFY_NOT_REACHED();
}
Reference Expression::to_reference(Interpreter&, GlobalObject&) const
{
return {};
}
Reference Identifier::to_reference(Interpreter& interpreter, GlobalObject&) const
{
if (m_cached_environment_coordinate.has_value()) {
auto* environment = interpreter.vm().running_execution_context().lexical_environment;
for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
environment = environment->outer_environment();
VERIFY(environment);
VERIFY(environment->is_declarative_environment());
if (!environment->is_permanently_screwed_by_eval()) {
return Reference { *environment, string(), interpreter.vm().in_strict_mode(), m_cached_environment_coordinate };
}
m_cached_environment_coordinate = {};
}
auto reference = interpreter.vm().resolve_binding(string());
if (reference.environment_coordinate().has_value())
m_cached_environment_coordinate = reference.environment_coordinate();
return reference;
}
Reference MemberExpression::to_reference(Interpreter& interpreter, GlobalObject& global_object) const
{
// 13.3.7.1 Runtime Semantics: Evaluation
// SuperProperty : super [ Expression ]
// SuperProperty : super . IdentifierName
// https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
if (is<SuperExpression>(object())) {
// 1. Let env be GetThisEnvironment().
auto& environment = get_this_environment(interpreter.vm());
// 2. Let actualThis be ? env.GetThisBinding().
auto actual_this = TRY_OR_DISCARD(environment.get_this_binding(global_object));
PropertyKey property_key;
if (is_computed()) {
// SuperProperty : super [ Expression ]
// 3. Let propertyNameReference be the result of evaluating Expression.
// 4. Let propertyNameValue be ? GetValue(propertyNameReference).
auto property_name_value = m_property->execute(interpreter, global_object);
if (interpreter.exception())
return {};
// 5. Let propertyKey be ? ToPropertyKey(propertyNameValue).
property_key = TRY_OR_DISCARD(property_name_value.to_property_key(global_object));
} else {
// SuperProperty : super . IdentifierName
// 3. Let propertyKey be StringValue of IdentifierName.
VERIFY(is<Identifier>(property()));
property_key = static_cast<Identifier const&>(property()).string();
}
// 6. If the code matched by this SuperProperty is strict mode code, let strict be true; else let strict be false.
bool strict = interpreter.vm().in_strict_mode();
// 7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
return TRY_OR_DISCARD(make_super_property_reference(global_object, actual_this, property_key, strict));
}
auto base_reference = m_object->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
Value base_value;
if (base_reference.is_valid_reference())
base_value = TRY_OR_DISCARD(base_reference.get_value(global_object));
else
base_value = m_object->execute(interpreter, global_object);
if (interpreter.exception())
return {};
VERIFY(!base_value.is_empty());
// From here on equivalent to
// 13.3.4 EvaluatePropertyAccessWithIdentifierKey ( baseValue, identifierName, strict ), https://tc39.es/ecma262/#sec-evaluate-property-access-with-identifier-key
PropertyKey property_name;
if (is_computed()) {
// Weird order which I can't quite find from the specs.
auto value = m_property->execute(interpreter, global_object);
if (interpreter.exception())
return Reference {};
TRY_OR_DISCARD(require_object_coercible(global_object, base_value));
VERIFY(!value.is_empty());
property_name = PropertyKey::from_value(global_object, value);
if (interpreter.exception())
return Reference {};
} else if (is<PrivateIdentifier>(*m_property)) {
auto& private_identifier = static_cast<PrivateIdentifier const&>(*m_property);
return make_private_reference(interpreter.vm(), base_value, private_identifier.string());
} else {
property_name = verify_cast<Identifier>(*m_property).string();
TRY_OR_DISCARD(require_object_coercible(global_object, base_value));
}
if (!property_name.is_valid())
return Reference {};
auto strict = interpreter.vm().in_strict_mode();
return Reference { base_value, move(property_name), {}, strict };
}
Value UnaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto& vm = interpreter.vm();
if (m_op == UnaryOp::Delete) {
auto reference = m_lhs->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
return Value(TRY_OR_DISCARD(reference.delete_(global_object)));
}
Value lhs_result;
if (m_op == UnaryOp::Typeof && is<Identifier>(*m_lhs)) {
auto reference = m_lhs->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
if (reference.is_unresolvable())
lhs_result = js_undefined();
else
lhs_result = TRY_OR_DISCARD(reference.get_value(global_object));
VERIFY(!lhs_result.is_empty());
} else {
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
switch (m_op) {
case UnaryOp::BitwiseNot:
return TRY_OR_DISCARD(bitwise_not(global_object, lhs_result));
case UnaryOp::Not:
return Value(!lhs_result.to_boolean());
case UnaryOp::Plus:
return TRY_OR_DISCARD(unary_plus(global_object, lhs_result));
case UnaryOp::Minus:
return TRY_OR_DISCARD(unary_minus(global_object, lhs_result));
case UnaryOp::Typeof:
return js_string(vm, lhs_result.typeof());
case UnaryOp::Void:
return js_undefined();
case UnaryOp::Delete:
VERIFY_NOT_REACHED();
}
VERIFY_NOT_REACHED();
}
Value SuperExpression::execute(Interpreter&, GlobalObject&) const
{
// The semantics for SuperExpression are handled in CallExpression and SuperCall.
VERIFY_NOT_REACHED();
}
Value ClassElement::execute(Interpreter&, GlobalObject&) const
{
// Note: The semantics of class element are handled in class_element_evaluation
VERIFY_NOT_REACHED();
}
static ThrowCompletionOr<ClassElement::ClassElementName> class_key_to_property_name(Interpreter& interpreter, GlobalObject& global_object, Expression const& key)
{
if (is<PrivateIdentifier>(key)) {
auto& private_identifier = static_cast<PrivateIdentifier const&>(key);
auto* private_environment = interpreter.vm().running_execution_context().private_environment;
VERIFY(private_environment);
return ClassElement::ClassElementName { private_environment->resolve_private_identifier(private_identifier.string()) };
}
auto prop_key = key.execute(interpreter, global_object);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
if (prop_key.is_object())
prop_key = TRY(prop_key.to_primitive(global_object, Value::PreferredType::String));
auto property_key = PropertyKey::from_value(global_object, prop_key);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
return ClassElement::ClassElementName { property_key };
}
// 15.4.5 Runtime Semantics: MethodDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-methoddefinitionevaluation
ThrowCompletionOr<ClassElement::ClassValue> ClassMethod::class_element_evaluation(Interpreter& interpreter, GlobalObject& global_object, Object& target) const
{
auto property_key = TRY(class_key_to_property_name(interpreter, global_object, *m_key));
auto method_value = m_function->execute(interpreter, global_object);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
auto& method_function = static_cast<ECMAScriptFunctionObject&>(method_value.as_function());
method_function.set_home_object(&target);
auto set_function_name = [&](String prefix = "") {
auto property_name = property_key.visit(
[&](PropertyKey const& property_name) -> String {
if (property_name.is_symbol()) {
auto description = property_name.as_symbol()->description();
if (description.is_empty())
return "";
return String::formatted("[{}]", description);
} else {
return property_name.to_string();
}
},
[&](PrivateName const& private_name) -> String {
return private_name.description;
});
update_function_name(method_value, String::formatted("{}{}{}", prefix, prefix.is_empty() ? "" : " ", property_name));
};
if (property_key.has<PropertyKey>()) {
auto& property_name = property_key.get<PropertyKey>();
switch (kind()) {
case ClassMethod::Kind::Method:
set_function_name();
TRY(target.define_property_or_throw(property_name, { .value = method_value, .writable = true, .enumerable = false, .configurable = true }));
break;
case ClassMethod::Kind::Getter:
set_function_name("get");
TRY(target.define_property_or_throw(property_name, { .get = &method_function, .enumerable = true, .configurable = true }));
break;
case ClassMethod::Kind::Setter:
set_function_name("set");
TRY(target.define_property_or_throw(property_name, { .set = &method_function, .enumerable = true, .configurable = true }));
break;
default:
VERIFY_NOT_REACHED();
}
return ClassValue { normal_completion({}) };
} else {
auto& private_name = property_key.get<PrivateName>();
switch (kind()) {
case Kind::Method:
set_function_name();
return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Method, method_value } };
case Kind::Getter:
set_function_name("get");
return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), &method_function, nullptr) } };
case Kind::Setter:
set_function_name("set");
return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), nullptr, &method_function) } };
default:
VERIFY_NOT_REACHED();
}
}
}
// We use this class to mimic Initializer : = AssignmentExpression of
// 10.2.1.3 Runtime Semantics: EvaluateBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatebody
class ClassFieldInitializerStatement : public Statement {
public:
ClassFieldInitializerStatement(SourceRange source_range, NonnullRefPtr<Expression> expression, FlyString field_name)
: Statement(source_range)
, m_expression(move(expression))
, m_class_field_identifier_name(move(field_name))
{
}
Value execute(Interpreter& interpreter, GlobalObject& global_object) const override
{
VERIFY(interpreter.vm().argument_count() == 0);
VERIFY(!m_class_field_identifier_name.is_empty());
return TRY_OR_DISCARD(interpreter.vm().named_evaluation_if_anonymous_function(global_object, m_expression, m_class_field_identifier_name));
}
void dump(int) const override
{
// This should not be dumped as it is never part of an actual AST.
VERIFY_NOT_REACHED();
}
private:
NonnullRefPtr<Expression> m_expression;
FlyString m_class_field_identifier_name; // [[ClassFieldIdentifierName]]
};
// 15.7.10 Runtime Semantics: ClassFieldDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classfielddefinitionevaluation
ThrowCompletionOr<ClassElement::ClassValue> ClassField::class_element_evaluation(Interpreter& interpreter, GlobalObject& global_object, Object& target) const
{
auto property_key = TRY(class_key_to_property_name(interpreter, global_object, *m_key));
ECMAScriptFunctionObject* initializer = nullptr;
if (m_initializer) {
auto copy_initializer = m_initializer;
auto name = property_key.visit(
[&](PropertyKey const& property_name) -> String {
return property_name.is_number() ? property_name.to_string() : property_name.to_string_or_symbol().to_display_string();
},
[&](PrivateName const& private_name) -> String {
return private_name.description;
});
// FIXME: A potential optimization is not creating the functions here since these are never directly accessible.
auto function_code = create_ast_node<ClassFieldInitializerStatement>(m_initializer->source_range(), copy_initializer.release_nonnull(), name);
initializer = ECMAScriptFunctionObject::create(interpreter.global_object(), String::empty(), *function_code, {}, 0, interpreter.lexical_environment(), interpreter.vm().running_execution_context().private_environment, FunctionKind::Regular, true, false, m_contains_direct_call_to_eval, false);
initializer->set_home_object(&target);
}
return ClassValue {
ClassFieldDefinition {
property_key,
initializer,
}
};
}
static Optional<FlyString> nullopt_or_private_identifier_description(Expression const& expression)
{
if (is<PrivateIdentifier>(expression))
return static_cast<PrivateIdentifier const&>(expression).string();
return {};
}
Optional<FlyString> ClassField::private_bound_identifier() const
{
return nullopt_or_private_identifier_description(*m_key);
}
Optional<FlyString> ClassMethod::private_bound_identifier() const
{
return nullopt_or_private_identifier_description(*m_key);
}
// 15.7.11 Runtime Semantics: ClassStaticBlockDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classstaticblockdefinitionevaluation
ThrowCompletionOr<ClassElement::ClassValue> StaticInitializer::class_element_evaluation(Interpreter& interpreter, GlobalObject& global_object, Object& home_object) const
{
auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment;
auto* private_scope = interpreter.vm().running_execution_context().private_environment;
// Note: The function bodyFunction is never directly accessible to ECMAScript code.
auto* body_function = ECMAScriptFunctionObject::create(global_object, "", *m_function_body, {}, 0, lexical_environment, private_scope, FunctionKind::Regular, true, false, m_contains_direct_call_to_eval, false);
body_function->set_home_object(&home_object);
return ClassValue { normal_completion(body_function) };
}
Value ClassExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// FIXME: Set value.[[SourceText]] to the source text matched by ClassExpression.
return TRY_OR_DISCARD(class_definition_evaluation(interpreter, global_object, m_name, m_name.is_null() ? "" : m_name));
}
Value ClassDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto name = m_class_expression->name();
VERIFY(!name.is_empty());
auto class_constructor = TRY_OR_DISCARD(m_class_expression->class_definition_evaluation(interpreter, global_object, name, name));
if (interpreter.lexical_environment()) {
MUST(interpreter.lexical_environment()->initialize_binding(global_object, name, class_constructor));
} else {
auto reference = interpreter.vm().resolve_binding(name);
TRY_OR_DISCARD(reference.put_value(global_object, class_constructor));
}
return {};
}
// 15.7.14 Runtime Semantics: ClassDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation
ThrowCompletionOr<Value> ClassExpression::class_definition_evaluation(Interpreter& interpreter, GlobalObject& global_object, FlyString const& binding_name, FlyString const& class_name) const
{
auto& vm = interpreter.vm();
auto* environment = vm.lexical_environment();
VERIFY(environment);
auto* class_scope = new_declarative_environment(*environment);
// We might not set the lexical environment but we always want to restore it eventually.
ArmedScopeGuard restore_environment = [&] {
vm.running_execution_context().lexical_environment = environment;
};
if (!binding_name.is_null())
MUST(class_scope->create_immutable_binding(global_object, binding_name, true));
auto* outer_private_environment = vm.running_execution_context().private_environment;
auto* class_private_environment = new_private_environment(vm, outer_private_environment);
for (auto const& element : m_elements) {
auto opt_private_name = element.private_bound_identifier();
if (opt_private_name.has_value())
class_private_environment->add_private_name({}, opt_private_name.release_value());
}
auto* proto_parent = vm.current_realm()->global_object().object_prototype();
auto* constructor_parent = vm.current_realm()->global_object().function_prototype();
if (!m_super_class.is_null()) {
vm.running_execution_context().lexical_environment = class_scope;
// Note: Since our execute does evaluation and GetValue in once we must check for a valid reference first
Value super_class;
auto reference = m_super_class->to_reference(interpreter, global_object);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
if (reference.is_valid_reference()) {
super_class = TRY(reference.get_value(global_object));
} else {
super_class = m_super_class->execute(interpreter, global_object);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
}
vm.running_execution_context().lexical_environment = environment;
if (super_class.is_null()) {
proto_parent = nullptr;
} else if (!super_class.is_constructor()) {
return vm.throw_completion<TypeError>(global_object, ErrorType::ClassExtendsValueNotAConstructorOrNull, super_class.to_string_without_side_effects());
} else {
auto super_class_prototype = TRY(super_class.get(global_object, vm.names.prototype));
if (!super_class_prototype.is_null() && !super_class_prototype.is_object())
return vm.throw_completion<TypeError>(global_object, ErrorType::ClassExtendsValueInvalidPrototype, super_class_prototype.to_string_without_side_effects());
if (super_class_prototype.is_null())
proto_parent = nullptr;
else
proto_parent = &super_class_prototype.as_object();
constructor_parent = &super_class.as_object();
}
}
auto* prototype = Object::create(global_object, proto_parent);
VERIFY(prototype);
vm.running_execution_context().lexical_environment = class_scope;
vm.running_execution_context().private_environment = class_private_environment;
ScopeGuard restore_private_environment = [&] {
vm.running_execution_context().private_environment = outer_private_environment;
};
// FIXME: Step 14.a is done in the parser. But maybe it shouldn't?
Value class_constructor_value = m_constructor->execute(interpreter, global_object);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
update_function_name(class_constructor_value, class_name);
VERIFY(class_constructor_value.is_function() && is<ECMAScriptFunctionObject>(class_constructor_value.as_function()));
auto* class_constructor = static_cast<ECMAScriptFunctionObject*>(&class_constructor_value.as_function());
class_constructor->set_home_object(prototype);
class_constructor->set_is_class_constructor();
class_constructor->define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
TRY(class_constructor->internal_set_prototype_of(constructor_parent));
if (!m_super_class.is_null())
class_constructor->set_constructor_kind(ECMAScriptFunctionObject::ConstructorKind::Derived);
prototype->define_direct_property(vm.names.constructor, class_constructor, Attribute::Writable | Attribute::Configurable);
using StaticElement = Variant<ClassElement::ClassFieldDefinition, ECMAScriptFunctionObject*>;
Vector<PrivateElement> static_private_methods;
Vector<PrivateElement> instance_private_methods;
Vector<ClassElement::ClassFieldDefinition> instance_fields;
Vector<StaticElement> static_elements;
for (auto const& element : m_elements) {
// Note: All ClassElementEvaluation start with evaluating the name (or we fake it).
auto element_value = TRY(element.class_element_evaluation(interpreter, global_object, element.is_static() ? *class_constructor : *prototype));
if (element_value.has<PrivateElement>()) {
auto& container = element.is_static() ? static_private_methods : instance_private_methods;
auto& private_element = element_value.get<PrivateElement>();
auto added_to_existing = false;
// FIXME: We can skip this loop in most cases.
for (auto& existing : container) {
if (existing.key == private_element.key) {
VERIFY(existing.kind == PrivateElement::Kind::Accessor);
VERIFY(private_element.kind == PrivateElement::Kind::Accessor);
auto& accessor = private_element.value.as_accessor();
if (!accessor.getter())
existing.value.as_accessor().set_setter(accessor.setter());
else
existing.value.as_accessor().set_getter(accessor.getter());
added_to_existing = true;
}
}
if (!added_to_existing)
container.append(move(element_value.get<PrivateElement>()));
} else if (auto* class_field_definition_ptr = element_value.get_pointer<ClassElement::ClassFieldDefinition>()) {
if (element.is_static())
static_elements.append(move(*class_field_definition_ptr));
else
instance_fields.append(move(*class_field_definition_ptr));
} else if (element.class_element_kind() == ClassElement::ElementKind::StaticInitializer) {
// We use Completion to hold the ClassStaticBlockDefinition Record.
VERIFY(element_value.has<Completion>() && element_value.get<Completion>().has_value());
auto element_object = element_value.get<Completion>().value();
VERIFY(is<ECMAScriptFunctionObject>(element_object.as_object()));
static_elements.append(static_cast<ECMAScriptFunctionObject*>(&element_object.as_object()));
}
}
vm.running_execution_context().lexical_environment = environment;
restore_environment.disarm();
if (!binding_name.is_null())
MUST(class_scope->initialize_binding(global_object, binding_name, class_constructor));
for (auto& field : instance_fields)
class_constructor->add_field(field.name, field.initializer);
for (auto& private_method : instance_private_methods)
class_constructor->add_private_method(private_method);
for (auto& method : static_private_methods)
class_constructor->private_method_or_accessor_add(move(method));
for (auto& element : static_elements) {
TRY(element.visit(
[&](ClassElement::ClassFieldDefinition const& field) -> ThrowCompletionOr<void> {
return TRY(class_constructor->define_field(field.name, field.initializer));
},
[&](ECMAScriptFunctionObject* static_block_function) -> ThrowCompletionOr<void> {
// We discard any value returned here.
TRY(call(global_object, static_block_function, class_constructor_value));
return {};
}));
}
return Value(class_constructor);
}
static void print_indent(int indent)
{
out("{}", String::repeated(' ', indent * 2));
}
void ASTNode::dump(int indent) const
{
print_indent(indent);
outln("{}", class_name());
}
void ScopeNode::dump(int indent) const
{
ASTNode::dump(indent);
if (!m_lexical_declarations.is_empty()) {
print_indent(indent + 1);
outln("(Lexical declarations)");
for (auto& declaration : m_lexical_declarations)
declaration.dump(indent + 2);
}
if (!m_var_declarations.is_empty()) {
print_indent(indent + 1);
outln("(Variable declarations)");
for (auto& declaration : m_var_declarations)
declaration.dump(indent + 2);
}
if (!m_functions_hoistable_with_annexB_extension.is_empty()) {
print_indent(indent + 1);
outln("(Hoisted functions via annexB extension)");
for (auto& declaration : m_functions_hoistable_with_annexB_extension)
declaration.dump(indent + 2);
}
if (!m_children.is_empty()) {
print_indent(indent + 1);
outln("(Children)");
for (auto& child : children())
child.dump(indent + 2);
}
}
void BinaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case BinaryOp::Addition:
op_string = "+";
break;
case BinaryOp::Subtraction:
op_string = "-";
break;
case BinaryOp::Multiplication:
op_string = "*";
break;
case BinaryOp::Division:
op_string = "/";
break;
case BinaryOp::Modulo:
op_string = "%";
break;
case BinaryOp::Exponentiation:
op_string = "**";
break;
case BinaryOp::StrictlyEquals:
op_string = "===";
break;
case BinaryOp::StrictlyInequals:
op_string = "!==";
break;
case BinaryOp::LooselyEquals:
op_string = "==";
break;
case BinaryOp::LooselyInequals:
op_string = "!=";
break;
case BinaryOp::GreaterThan:
op_string = ">";
break;
case BinaryOp::GreaterThanEquals:
op_string = ">=";
break;
case BinaryOp::LessThan:
op_string = "<";
break;
case BinaryOp::LessThanEquals:
op_string = "<=";
break;
case BinaryOp::BitwiseAnd:
op_string = "&";
break;
case BinaryOp::BitwiseOr:
op_string = "|";
break;
case BinaryOp::BitwiseXor:
op_string = "^";
break;
case BinaryOp::LeftShift:
op_string = "<<";
break;
case BinaryOp::RightShift:
op_string = ">>";
break;
case BinaryOp::UnsignedRightShift:
op_string = ">>>";
break;
case BinaryOp::In:
op_string = "in";
break;
case BinaryOp::InstanceOf:
op_string = "instanceof";
break;
}
print_indent(indent);
outln("{}", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
outln("{}", op_string);
m_rhs->dump(indent + 1);
}
void LogicalExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case LogicalOp::And:
op_string = "&&";
break;
case LogicalOp::Or:
op_string = "||";
break;
case LogicalOp::NullishCoalescing:
op_string = "??";
break;
}
print_indent(indent);
outln("{}", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
outln("{}", op_string);
m_rhs->dump(indent + 1);
}
void UnaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UnaryOp::BitwiseNot:
op_string = "~";
break;
case UnaryOp::Not:
op_string = "!";
break;
case UnaryOp::Plus:
op_string = "+";
break;
case UnaryOp::Minus:
op_string = "-";
break;
case UnaryOp::Typeof:
op_string = "typeof ";
break;
case UnaryOp::Void:
op_string = "void ";
break;
case UnaryOp::Delete:
op_string = "delete ";
break;
}
print_indent(indent);
outln("{}", class_name());
print_indent(indent + 1);
outln("{}", op_string);
m_lhs->dump(indent + 1);
}
void CallExpression::dump(int indent) const
{
print_indent(indent);
if (is<NewExpression>(*this))
outln("CallExpression [new]");
else
outln("CallExpression");
m_callee->dump(indent + 1);
for (auto& argument : m_arguments)
argument.value->dump(indent + 1);
}
void SuperCall::dump(int indent) const
{
print_indent(indent);
outln("SuperCall");
for (auto& argument : m_arguments)
argument.value->dump(indent + 1);
}
void ClassDeclaration::dump(int indent) const
{
ASTNode::dump(indent);
m_class_expression->dump(indent + 1);
}
void ClassDeclaration::for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const
{
if (!m_class_expression->name().is_empty())
callback(m_class_expression->name());
}
void ClassExpression::dump(int indent) const
{
print_indent(indent);
outln("ClassExpression: \"{}\"", m_name);
print_indent(indent);
outln("(Constructor)");
m_constructor->dump(indent + 1);
if (!m_super_class.is_null()) {
print_indent(indent);
outln("(Super Class)");
m_super_class->dump(indent + 1);
}
print_indent(indent);
outln("(Elements)");
for (auto& method : m_elements)
method.dump(indent + 1);
}
void ClassMethod::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("(Key)");
m_key->dump(indent + 1);
const char* kind_string = nullptr;
switch (m_kind) {
case Kind::Method:
kind_string = "Method";
break;
case Kind::Getter:
kind_string = "Getter";
break;
case Kind::Setter:
kind_string = "Setter";
break;
}
print_indent(indent);
outln("Kind: {}", kind_string);
print_indent(indent);
outln("Static: {}", is_static());
print_indent(indent);
outln("(Function)");
m_function->dump(indent + 1);
}
void ClassField::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("(Key)");
m_key->dump(indent + 1);
print_indent(indent);
outln("Static: {}", is_static());
if (m_initializer) {
print_indent(indent);
outln("(Initializer)");
m_initializer->dump(indent + 1);
}
}
void StaticInitializer::dump(int indent) const
{
ASTNode::dump(indent);
m_function_body->dump(indent + 1);
}
void StringLiteral::dump(int indent) const
{
print_indent(indent);
outln("StringLiteral \"{}\"", m_value);
}
void SuperExpression::dump(int indent) const
{
print_indent(indent);
outln("super");
}
void NumericLiteral::dump(int indent) const
{
print_indent(indent);
outln("NumericLiteral {}", m_value);
}
void BigIntLiteral::dump(int indent) const
{
print_indent(indent);
outln("BigIntLiteral {}", m_value);
}
void BooleanLiteral::dump(int indent) const
{
print_indent(indent);
outln("BooleanLiteral {}", m_value);
}
void NullLiteral::dump(int indent) const
{
print_indent(indent);
outln("null");
}
bool BindingPattern::contains_expression() const
{
for (auto& entry : entries) {
if (entry.initializer)
return true;
if (auto binding_ptr = entry.alias.get_pointer<NonnullRefPtr<BindingPattern>>(); binding_ptr && (*binding_ptr)->contains_expression())
return true;
}
return false;
}
void BindingPattern::dump(int indent) const
{
print_indent(indent);
outln("BindingPattern {}", kind == Kind::Array ? "Array" : "Object");
for (auto& entry : entries) {
print_indent(indent + 1);
outln("(Property)");
if (kind == Kind::Object) {
print_indent(indent + 2);
outln("(Identifier)");
if (entry.name.has<NonnullRefPtr<Identifier>>()) {
entry.name.get<NonnullRefPtr<Identifier>>()->dump(indent + 3);
} else {
entry.name.get<NonnullRefPtr<Expression>>()->dump(indent + 3);
}
} else if (entry.is_elision()) {
print_indent(indent + 2);
outln("(Elision)");
continue;
}
print_indent(indent + 2);
outln("(Pattern{})", entry.is_rest ? " rest=true" : "");
if (entry.alias.has<NonnullRefPtr<Identifier>>()) {
entry.alias.get<NonnullRefPtr<Identifier>>()->dump(indent + 3);
} else if (entry.alias.has<NonnullRefPtr<BindingPattern>>()) {
entry.alias.get<NonnullRefPtr<BindingPattern>>()->dump(indent + 3);
} else if (entry.alias.has<NonnullRefPtr<MemberExpression>>()) {
entry.alias.get<NonnullRefPtr<MemberExpression>>()->dump(indent + 3);
} else {
print_indent(indent + 3);
outln("<empty>");
}
if (entry.initializer) {
print_indent(indent + 2);
outln("(Initializer)");
entry.initializer->dump(indent + 3);
}
}
}
void FunctionNode::dump(int indent, String const& class_name) const
{
print_indent(indent);
auto is_async = m_kind == FunctionKind::Async || m_kind == FunctionKind::AsyncGenerator;
auto is_generator = m_kind == FunctionKind::Generator || m_kind == FunctionKind::AsyncGenerator;
outln("{}{}{} '{}'", class_name, is_async ? " async" : "", is_generator ? "*" : "", name());
if (m_contains_direct_call_to_eval) {
print_indent(indent + 1);
outln("\033[31;1m(direct eval)\033[0m");
}
if (!m_parameters.is_empty()) {
print_indent(indent + 1);
outln("(Parameters)");
for (auto& parameter : m_parameters) {
print_indent(indent + 2);
if (parameter.is_rest)
out("...");
parameter.binding.visit(
[&](FlyString const& name) {
outln("{}", name);
},
[&](BindingPattern const& pattern) {
pattern.dump(indent + 2);
});
if (parameter.default_value)
parameter.default_value->dump(indent + 3);
}
}
print_indent(indent + 1);
outln("(Body)");
body().dump(indent + 2);
}
void FunctionDeclaration::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void FunctionDeclaration::for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const
{
if (!name().is_empty())
callback(name());
}
void FunctionExpression::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void YieldExpression::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void AwaitExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_argument->dump(indent + 1);
}
void ReturnStatement::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void IfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("If");
predicate().dump(indent + 1);
consequent().dump(indent + 1);
if (alternate()) {
print_indent(indent);
outln("Else");
alternate()->dump(indent + 1);
}
}
void WhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("While");
test().dump(indent + 1);
body().dump(indent + 1);
}
void WithStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
outln("Object");
object().dump(indent + 2);
print_indent(indent + 1);
outln("Body");
body().dump(indent + 2);
}
void DoWhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("DoWhile");
test().dump(indent + 1);
body().dump(indent + 1);
}
void ForStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("For");
if (init())
init()->dump(indent + 1);
if (test())
test()->dump(indent + 1);
if (update())
update()->dump(indent + 1);
body().dump(indent + 1);
}
void ForInStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("ForIn");
lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
rhs().dump(indent + 1);
body().dump(indent + 1);
}
void ForOfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("ForOf");
lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
rhs().dump(indent + 1);
body().dump(indent + 1);
}
void ForAwaitOfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("ForAwaitOf");
m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
m_rhs->dump(indent + 1);
m_body->dump(indent + 1);
}
Value Identifier::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto reference = to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
return TRY_OR_DISCARD(reference.get_value(global_object));
}
void Identifier::dump(int indent) const
{
print_indent(indent);
outln("Identifier \"{}\"", m_string);
}
Value PrivateIdentifier::execute(Interpreter&, GlobalObject&) const
{
// Note: This should be handled by either the member expression this is part of
// or the binary expression in the case of `#foo in bar`.
VERIFY_NOT_REACHED();
}
void PrivateIdentifier::dump(int indent) const
{
print_indent(indent);
outln("PrivateIdentifier \"{}\"", m_string);
}
void SpreadExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_target->dump(indent + 1);
}
Value SpreadExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
return m_target->execute(interpreter, global_object);
}
Value ThisExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
return interpreter.vm().resolve_this_binding(global_object);
}
void ThisExpression::dump(int indent) const
{
ASTNode::dump(indent);
}
// 13.15.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-assignment-operators-runtime-semantics-evaluation
Value AssignmentExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
if (m_op == AssignmentOp::Assignment) {
// AssignmentExpression : LeftHandSideExpression = AssignmentExpression
return m_lhs.visit(
[&](NonnullRefPtr<Expression>& lhs) -> JS::Value {
auto reference = lhs->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
Value rhs_result;
if (lhs->is_identifier()) {
auto& identifier_name = static_cast<Identifier const&>(*lhs).string();
rhs_result = TRY_OR_DISCARD(interpreter.vm().named_evaluation_if_anonymous_function(global_object, m_rhs, identifier_name));
} else {
rhs_result = m_rhs->execute(interpreter, global_object);
}
if (interpreter.exception())
return {};
TRY_OR_DISCARD(reference.put_value(global_object, rhs_result));
return rhs_result;
},
[&](NonnullRefPtr<BindingPattern>& pattern) -> JS::Value {
Value rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
TRY_OR_DISCARD(interpreter.vm().destructuring_assignment_evaluation(pattern, rhs_result, global_object));
return rhs_result;
});
}
VERIFY(m_lhs.has<NonnullRefPtr<Expression>>());
auto& lhs_expression = *m_lhs.get<NonnullRefPtr<Expression>>();
auto reference = lhs_expression.to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
auto lhs_result = TRY_OR_DISCARD(reference.get_value(global_object));
// AssignmentExpression : LeftHandSideExpression {&&=, ||=, ??=} AssignmentExpression
if (m_op == AssignmentOp::AndAssignment || m_op == AssignmentOp::OrAssignment || m_op == AssignmentOp::NullishAssignment) {
switch (m_op) {
case AssignmentOp::AndAssignment:
if (!lhs_result.to_boolean())
return lhs_result;
break;
case AssignmentOp::OrAssignment:
if (lhs_result.to_boolean())
return lhs_result;
break;
case AssignmentOp::NullishAssignment:
if (!lhs_result.is_nullish())
return lhs_result;
break;
default:
VERIFY_NOT_REACHED();
}
Value rhs_result;
if (lhs_expression.is_identifier()) {
auto& identifier_name = static_cast<Identifier const&>(lhs_expression).string();
rhs_result = TRY_OR_DISCARD(interpreter.vm().named_evaluation_if_anonymous_function(global_object, m_rhs, identifier_name));
} else {
rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
TRY_OR_DISCARD(reference.put_value(global_object, rhs_result));
return rhs_result;
}
// AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
switch (m_op) {
case AssignmentOp::AdditionAssignment:
rhs_result = TRY_OR_DISCARD(add(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::SubtractionAssignment:
rhs_result = TRY_OR_DISCARD(sub(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::MultiplicationAssignment:
rhs_result = TRY_OR_DISCARD(mul(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::DivisionAssignment:
rhs_result = TRY_OR_DISCARD(div(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::ModuloAssignment:
rhs_result = TRY_OR_DISCARD(mod(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::ExponentiationAssignment:
rhs_result = TRY_OR_DISCARD(exp(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::BitwiseAndAssignment:
rhs_result = TRY_OR_DISCARD(bitwise_and(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::BitwiseOrAssignment:
rhs_result = TRY_OR_DISCARD(bitwise_or(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::BitwiseXorAssignment:
rhs_result = TRY_OR_DISCARD(bitwise_xor(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::LeftShiftAssignment:
rhs_result = TRY_OR_DISCARD(left_shift(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::RightShiftAssignment:
rhs_result = TRY_OR_DISCARD(right_shift(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::UnsignedRightShiftAssignment:
rhs_result = TRY_OR_DISCARD(unsigned_right_shift(global_object, lhs_result, rhs_result));
break;
case AssignmentOp::Assignment:
case AssignmentOp::AndAssignment:
case AssignmentOp::OrAssignment:
case AssignmentOp::NullishAssignment:
VERIFY_NOT_REACHED();
}
TRY_OR_DISCARD(reference.put_value(global_object, rhs_result));
return rhs_result;
}
Value UpdateExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto reference = m_argument->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
auto old_value = TRY_OR_DISCARD(reference.get_value(global_object));
old_value = TRY_OR_DISCARD(old_value.to_numeric(global_object));
Value new_value;
switch (m_op) {
case UpdateOp::Increment:
if (old_value.is_number())
new_value = Value(old_value.as_double() + 1);
else
new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
break;
case UpdateOp::Decrement:
if (old_value.is_number())
new_value = Value(old_value.as_double() - 1);
else
new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
break;
default:
VERIFY_NOT_REACHED();
}
TRY_OR_DISCARD(reference.put_value(global_object, new_value));
return m_prefixed ? new_value : old_value;
}
void AssignmentExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case AssignmentOp::Assignment:
op_string = "=";
break;
case AssignmentOp::AdditionAssignment:
op_string = "+=";
break;
case AssignmentOp::SubtractionAssignment:
op_string = "-=";
break;
case AssignmentOp::MultiplicationAssignment:
op_string = "*=";
break;
case AssignmentOp::DivisionAssignment:
op_string = "/=";
break;
case AssignmentOp::ModuloAssignment:
op_string = "%=";
break;
case AssignmentOp::ExponentiationAssignment:
op_string = "**=";
break;
case AssignmentOp::BitwiseAndAssignment:
op_string = "&=";
break;
case AssignmentOp::BitwiseOrAssignment:
op_string = "|=";
break;
case AssignmentOp::BitwiseXorAssignment:
op_string = "^=";
break;
case AssignmentOp::LeftShiftAssignment:
op_string = "<<=";
break;
case AssignmentOp::RightShiftAssignment:
op_string = ">>=";
break;
case AssignmentOp::UnsignedRightShiftAssignment:
op_string = ">>>=";
break;
case AssignmentOp::AndAssignment:
op_string = "&&=";
break;
case AssignmentOp::OrAssignment:
op_string = "||=";
break;
case AssignmentOp::NullishAssignment:
op_string = "\?\?=";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
outln("{}", op_string);
m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
m_rhs->dump(indent + 1);
}
void UpdateExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UpdateOp::Increment:
op_string = "++";
break;
case UpdateOp::Decrement:
op_string = "--";
break;
}
ASTNode::dump(indent);
if (m_prefixed) {
print_indent(indent + 1);
outln("{}", op_string);
}
m_argument->dump(indent + 1);
if (!m_prefixed) {
print_indent(indent + 1);
outln("{}", op_string);
}
}
Value VariableDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
for (auto& declarator : m_declarations) {
if (auto* init = declarator.init()) {
TRY_OR_DISCARD(declarator.target().visit(
[&](NonnullRefPtr<Identifier> const& id) -> ThrowCompletionOr<void> {
auto reference = id->to_reference(interpreter, global_object);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
auto initializer_result = TRY_OR_DISCARD(interpreter.vm().named_evaluation_if_anonymous_function(global_object, *init, id->string()));
VERIFY(!initializer_result.is_empty());
if (m_declaration_kind == DeclarationKind::Var)
return reference.put_value(global_object, initializer_result);
else
return reference.initialize_referenced_binding(global_object, initializer_result);
},
[&](NonnullRefPtr<BindingPattern> const& pattern) -> ThrowCompletionOr<void> {
auto initializer_result = init->execute(interpreter, global_object);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
Environment* environment = m_declaration_kind == DeclarationKind::Var ? nullptr : interpreter.lexical_environment();
return interpreter.vm().binding_initialization(pattern, initializer_result, environment, global_object);
}));
} else if (m_declaration_kind != DeclarationKind::Var) {
VERIFY(declarator.target().has<NonnullRefPtr<Identifier>>());
auto& identifier = declarator.target().get<NonnullRefPtr<Identifier>>();
auto reference = identifier->to_reference(interpreter, global_object);
TRY_OR_DISCARD(reference.initialize_referenced_binding(global_object, js_undefined()));
}
}
return {};
}
Value VariableDeclarator::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// NOTE: VariableDeclarator execution is handled by VariableDeclaration.
VERIFY_NOT_REACHED();
}
void VariableDeclaration::for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const
{
for (auto& entry : declarations()) {
entry.target().template visit(
[&](const NonnullRefPtr<Identifier>& id) {
callback(id->string());
},
[&](const NonnullRefPtr<BindingPattern>& binding) {
binding->for_each_bound_name([&](const auto& name) {
callback(name);
});
});
}
}
void VariableDeclaration::dump(int indent) const
{
const char* declaration_kind_string = nullptr;
switch (m_declaration_kind) {
case DeclarationKind::Let:
declaration_kind_string = "Let";
break;
case DeclarationKind::Var:
declaration_kind_string = "Var";
break;
case DeclarationKind::Const:
declaration_kind_string = "Const";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
outln("{}", declaration_kind_string);
for (auto& declarator : m_declarations)
declarator.dump(indent + 1);
}
void VariableDeclarator::dump(int indent) const
{
ASTNode::dump(indent);
m_target.visit([indent](const auto& value) { value->dump(indent + 1); });
if (m_init)
m_init->dump(indent + 1);
}
void ObjectProperty::dump(int indent) const
{
ASTNode::dump(indent);
if (m_property_type == Type::Spread) {
print_indent(indent + 1);
outln("...Spreading");
m_key->dump(indent + 1);
} else {
m_key->dump(indent + 1);
m_value->dump(indent + 1);
}
}
void ObjectExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& property : m_properties) {
property.dump(indent + 1);
}
}
void ExpressionStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_expression->dump(indent + 1);
}
Value ObjectProperty::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// NOTE: ObjectProperty execution is handled by ObjectExpression.
VERIFY_NOT_REACHED();
}
Value ObjectExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto* object = Object::create(global_object, global_object.object_prototype());
for (auto& property : m_properties) {
auto key = property.key().execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (property.type() == ObjectProperty::Type::Spread) {
if (key.is_object() && is<Array>(key.as_object())) {
auto& array_to_spread = static_cast<Array&>(key.as_object());
for (auto& entry : array_to_spread.indexed_properties()) {
auto value = TRY_OR_DISCARD(array_to_spread.get(entry.index()));
object->indexed_properties().put(entry.index(), value);
if (interpreter.exception())
return {};
}
} else if (key.is_object()) {
auto& obj_to_spread = key.as_object();
for (auto& it : obj_to_spread.shape().property_table_ordered()) {
if (it.value.attributes.is_enumerable()) {
object->define_direct_property(it.key, TRY_OR_DISCARD(obj_to_spread.get(it.key)), JS::default_attributes);
if (interpreter.exception())
return {};
}
}
} else if (key.is_string()) {
auto& str_to_spread = key.as_string().string();
for (size_t i = 0; i < str_to_spread.length(); i++) {
object->define_direct_property(i, js_string(interpreter.heap(), str_to_spread.substring(i, 1)), JS::default_attributes);
if (interpreter.exception())
return {};
}
}
continue;
}
auto value = property.value().execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (value.is_function() && property.is_method())
static_cast<ECMAScriptFunctionObject&>(value.as_function()).set_home_object(object);
auto name = TRY_OR_DISCARD(get_function_name(global_object, key));
if (property.type() == ObjectProperty::Type::Getter) {
name = String::formatted("get {}", name);
} else if (property.type() == ObjectProperty::Type::Setter) {
name = String::formatted("set {}", name);
}
update_function_name(value, name);
switch (property.type()) {
case ObjectProperty::Type::Getter:
VERIFY(value.is_function());
object->define_direct_accessor(PropertyKey::from_value(global_object, key), &value.as_function(), nullptr, Attribute::Configurable | Attribute::Enumerable);
break;
case ObjectProperty::Type::Setter:
VERIFY(value.is_function());
object->define_direct_accessor(PropertyKey::from_value(global_object, key), nullptr, &value.as_function(), Attribute::Configurable | Attribute::Enumerable);
break;
case ObjectProperty::Type::KeyValue:
object->define_direct_property(PropertyKey::from_value(global_object, key), value, JS::default_attributes);
break;
case ObjectProperty::Type::Spread:
default:
VERIFY_NOT_REACHED();
}
if (interpreter.exception())
return {};
}
return object;
}
void MemberExpression::dump(int indent) const
{
print_indent(indent);
outln("{}(computed={})", class_name(), is_computed());
m_object->dump(indent + 1);
m_property->dump(indent + 1);
}
PropertyKey MemberExpression::computed_property_name(Interpreter& interpreter, GlobalObject& global_object) const
{
if (!is_computed())
return verify_cast<Identifier>(*m_property).string();
auto value = m_property->execute(interpreter, global_object);
if (interpreter.exception())
return {};
VERIFY(!value.is_empty());
return PropertyKey::from_value(global_object, value);
}
String MemberExpression::to_string_approximation() const
{
String object_string = "<object>";
if (is<Identifier>(*m_object))
object_string = static_cast<Identifier const&>(*m_object).string();
if (is_computed())
return String::formatted("{}[<computed>]", object_string);
return String::formatted("{}.{}", object_string, verify_cast<Identifier>(*m_property).string());
}
Value MemberExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto reference = to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
return TRY_OR_DISCARD(reference.get_value(global_object));
}
bool MemberExpression::ends_in_private_name() const
{
if (is_computed())
return false;
if (is<PrivateIdentifier>(*m_property))
return true;
if (is<MemberExpression>(*m_property))
return static_cast<MemberExpression const&>(*m_property).ends_in_private_name();
return false;
}
void OptionalChain::dump(int indent) const
{
print_indent(indent);
outln("{}", class_name());
m_base->dump(indent + 1);
for (auto& reference : m_references) {
reference.visit(
[&](Call const& call) {
print_indent(indent + 1);
outln("Call({})", call.mode == Mode::Optional ? "Optional" : "Not Optional");
for (auto& argument : call.arguments)
argument.value->dump(indent + 2);
},
[&](ComputedReference const& ref) {
print_indent(indent + 1);
outln("ComputedReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
ref.expression->dump(indent + 2);
},
[&](MemberReference const& ref) {
print_indent(indent + 1);
outln("MemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
ref.identifier->dump(indent + 2);
},
[&](PrivateMemberReference const& ref) {
print_indent(indent + 1);
outln("PrivateMemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
ref.private_identifier->dump(indent + 2);
});
}
}
Optional<OptionalChain::ReferenceAndValue> OptionalChain::to_reference_and_value(JS::Interpreter& interpreter, JS::GlobalObject& global_object) const
{
// Note: This is wrapped in an optional to allow base_reference = ...
Optional<JS::Reference> base_reference = m_base->to_reference(interpreter, global_object);
auto base = base_reference->is_unresolvable() ? m_base->execute(interpreter, global_object) : TRY_OR_DISCARD(base_reference->get_value(global_object));
if (interpreter.exception())
return {};
for (auto& reference : m_references) {
auto is_optional = reference.visit([](auto& ref) { return ref.mode; }) == Mode::Optional;
if (is_optional && base.is_nullish())
return ReferenceAndValue { {}, js_undefined() };
auto expression = reference.visit(
[&](Call const& call) -> NonnullRefPtr<Expression> {
return create_ast_node<CallExpression>(source_range(),
create_ast_node<SyntheticReferenceExpression>(source_range(), *base_reference, base),
call.arguments);
},
[&](ComputedReference const& ref) -> NonnullRefPtr<Expression> {
return create_ast_node<MemberExpression>(source_range(),
create_ast_node<SyntheticReferenceExpression>(source_range(), *base_reference, base),
ref.expression,
true);
},
[&](MemberReference const& ref) -> NonnullRefPtr<Expression> {
return create_ast_node<MemberExpression>(source_range(),
create_ast_node<SyntheticReferenceExpression>(source_range(), *base_reference, base),
ref.identifier,
false);
},
[&](PrivateMemberReference const& ref) -> NonnullRefPtr<Expression> {
return create_ast_node<MemberExpression>(source_range(),
create_ast_node<SyntheticReferenceExpression>(source_range(), *base_reference, base),
ref.private_identifier,
false);
});
if (is<CallExpression>(*expression)) {
base_reference = JS::Reference {};
base = expression->execute(interpreter, global_object);
} else {
base_reference = expression->to_reference(interpreter, global_object);
base = TRY_OR_DISCARD(base_reference->get_value(global_object));
}
if (interpreter.exception())
return {};
}
return ReferenceAndValue { base_reference.release_value(), base };
}
Value OptionalChain::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
if (auto result = to_reference_and_value(interpreter, global_object); result.has_value())
return result.release_value().value;
return {};
}
JS::Reference OptionalChain::to_reference(Interpreter& interpreter, GlobalObject& global_object) const
{
if (auto result = to_reference_and_value(interpreter, global_object); result.has_value())
return result.release_value().reference;
return {};
}
void MetaProperty::dump(int indent) const
{
String name;
if (m_type == MetaProperty::Type::NewTarget)
name = "new.target";
else if (m_type == MetaProperty::Type::ImportMeta)
name = "import.meta";
else
VERIFY_NOT_REACHED();
print_indent(indent);
outln("{} {}", class_name(), name);
}
Value MetaProperty::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
if (m_type == MetaProperty::Type::NewTarget)
return interpreter.vm().get_new_target().value_or(js_undefined());
if (m_type == MetaProperty::Type::ImportMeta) {
interpreter.vm().throw_exception<InternalError>(global_object, ErrorType::NotImplemented, "'import.meta' in modules");
return {};
}
VERIFY_NOT_REACHED();
}
void ImportCall::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("(Specifier)");
m_specifier->dump(indent + 1);
if (m_options) {
outln("(Options)");
m_options->dump(indent + 1);
}
}
Value ImportCall::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
interpreter.vm().throw_exception<InternalError>(global_object, ErrorType::NotImplemented, "'import(...)' in modules");
return {};
}
Value StringLiteral::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
return js_string(interpreter.heap(), m_value);
}
Value NumericLiteral::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
return Value(m_value);
}
Value BigIntLiteral::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
Crypto::SignedBigInteger integer;
if (m_value[0] == '0' && m_value.length() >= 3) {
if (m_value[1] == 'x' || m_value[1] == 'X') {
return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(16, m_value.substring(2, m_value.length() - 3)));
} else if (m_value[1] == 'o' || m_value[1] == 'O') {
return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(8, m_value.substring(2, m_value.length() - 3)));
} else if (m_value[1] == 'b' || m_value[1] == 'B') {
return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(2, m_value.substring(2, m_value.length() - 3)));
}
}
return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(10, m_value.substring(0, m_value.length() - 1)));
}
Value BooleanLiteral::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
return Value(m_value);
}
Value NullLiteral::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
return js_null();
}
void RegExpLiteral::dump(int indent) const
{
print_indent(indent);
outln("{} (/{}/{})", class_name(), pattern(), flags());
}
Value RegExpLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
Regex<ECMA262> regex(parsed_regex(), parsed_pattern(), parsed_flags());
return RegExpObject::create(global_object, move(regex), pattern(), flags());
}
void ArrayExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& element : m_elements) {
if (element) {
element->dump(indent + 1);
} else {
print_indent(indent + 1);
outln("<empty>");
}
}
}
Value ArrayExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto* array = MUST(Array::create(global_object, 0));
array->indexed_properties();
size_t index = 0;
for (auto& element : m_elements) {
auto value = Value();
if (element) {
value = element->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (is<SpreadExpression>(*element)) {
TRY_OR_DISCARD(get_iterator_values(global_object, value, [&](Value iterator_value) -> Optional<Completion> {
array->indexed_properties().put(index++, iterator_value, default_attributes);
return {};
}));
continue;
}
}
array->indexed_properties().put(index++, value, default_attributes);
}
return array;
}
void TemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value TemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
StringBuilder string_builder;
for (auto& expression : m_expressions) {
auto expr = expression.execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto string = TRY_OR_DISCARD(expr.to_string(global_object));
string_builder.append(string);
}
return js_string(interpreter.heap(), string_builder.build());
}
void TaggedTemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
outln("(Tag)");
m_tag->dump(indent + 2);
print_indent(indent + 1);
outln("(Template Literal)");
m_template_literal->dump(indent + 2);
}
Value TaggedTemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto& vm = interpreter.vm();
auto tag = m_tag->execute(interpreter, global_object);
if (vm.exception())
return {};
if (!tag.is_function()) {
vm.throw_exception<TypeError>(global_object, ErrorType::NotAFunction, tag.to_string_without_side_effects());
return {};
}
auto& tag_function = tag.as_function();
auto& expressions = m_template_literal->expressions();
auto* strings = MUST(Array::create(global_object, 0));
MarkedValueList arguments(vm.heap());
arguments.append(strings);
for (size_t i = 0; i < expressions.size(); ++i) {
auto value = expressions[i].execute(interpreter, global_object);
if (vm.exception())
return {};
// tag`${foo}` -> "", foo, "" -> tag(["", ""], foo)
// tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux)
if (i % 2 == 0) {
strings->indexed_properties().append(value);
} else {
arguments.append(value);
}
}
auto* raw_strings = MUST(Array::create(global_object, 0));
for (auto& raw_string : m_template_literal->raw_strings()) {
auto value = raw_string.execute(interpreter, global_object);
if (vm.exception())
return {};
raw_strings->indexed_properties().append(value);
}
strings->define_direct_property(vm.names.raw, raw_strings, 0);
return TRY_OR_DISCARD(vm.call(tag_function, js_undefined(), move(arguments)));
}
void TryStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("(Block)");
block().dump(indent + 1);
if (handler()) {
print_indent(indent);
outln("(Handler)");
handler()->dump(indent + 1);
}
if (finalizer()) {
print_indent(indent);
outln("(Finalizer)");
finalizer()->dump(indent + 1);
}
}
void CatchClause::dump(int indent) const
{
print_indent(indent);
m_parameter.visit(
[&](FlyString const& parameter) {
if (parameter.is_null())
outln("CatchClause");
else
outln("CatchClause ({})", parameter);
},
[&](NonnullRefPtr<BindingPattern> const& pattern) {
outln("CatchClause");
print_indent(indent);
outln("(Parameter)");
pattern->dump(indent + 2);
});
body().dump(indent + 1);
}
void ThrowStatement::dump(int indent) const
{
ASTNode::dump(indent);
argument().dump(indent + 1);
}
void TryStatement::add_label(FlyString string)
{
m_block->add_label(move(string));
}
Value TryStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// FIXME: Use Completions here to be closer to the spec.
auto result = m_block->execute(interpreter, global_object);
if (interpreter.vm().unwind_until() == ScopeType::Try)
interpreter.vm().stop_unwind();
if (auto* exception = interpreter.exception()) {
// 14.15.2 Runtime Semantics: CatchClauseEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-catchclauseevaluation
if (m_handler) {
interpreter.vm().clear_exception();
auto* catch_scope = new_declarative_environment(*interpreter.lexical_environment());
m_handler->parameter().visit(
[&](FlyString const& parameter) {
MUST(catch_scope->create_mutable_binding(global_object, parameter, false));
},
[&](NonnullRefPtr<BindingPattern> const& pattern) {
pattern->for_each_bound_name([&](auto& name) {
MUST(catch_scope->create_mutable_binding(global_object, name, false));
});
});
TemporaryChange<Environment*> scope_change(interpreter.vm().running_execution_context().lexical_environment, catch_scope);
m_handler->parameter().visit(
[&](FlyString const& parameter) {
(void)catch_scope->initialize_binding(global_object, parameter, exception->value());
},
[&](NonnullRefPtr<BindingPattern> const& pattern) {
(void)interpreter.vm().binding_initialization(pattern, exception->value(), catch_scope, global_object);
});
if (!interpreter.exception())
result = m_handler->body().execute(interpreter, global_object);
}
}
if (m_finalizer) {
// Keep, if any, and then clear the current exception so we can
// execute() the finalizer without an exception in our way.
auto* previous_exception = interpreter.exception();
interpreter.vm().clear_exception();
// Remember what scope type we were unwinding to, and temporarily
// clear it as well (e.g. return from handler).
auto unwind_until = interpreter.vm().unwind_until();
interpreter.vm().stop_unwind();
auto finalizer_result = m_finalizer->execute(interpreter, global_object);
if (interpreter.vm().should_unwind()) {
// This was NOT a 'normal' completion (e.g. return from finalizer).
result = finalizer_result;
} else {
// Continue unwinding to whatever we found ourselves unwinding
// to when the finalizer was entered (e.g. return from handler,
// which is unaffected by normal completion from finalizer).
interpreter.vm().unwind(unwind_until);
// If we previously had an exception and the finalizer didn't
// throw a new one, restore the old one.
if (previous_exception && !interpreter.exception())
interpreter.vm().set_exception(*previous_exception);
}
}
return result.value_or(js_undefined());
}
Value CatchClause::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// NOTE: CatchClause execution is handled by TryStatement.
VERIFY_NOT_REACHED();
return {};
}
Value ThrowStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto value = m_argument->execute(interpreter, global_object);
if (interpreter.vm().exception())
return {};
interpreter.vm().throw_exception(global_object, value);
return {};
}
// 14.12.2 Runtime Semantics: CaseBlockEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-caseblockevaluation
Value SwitchStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
// FIXME: This needs a massive refactoring, ideally once we start using continue, break, and return completions.
// Instead of having an optional test expression, SwitchCase should be split into CaseClause and DefaultClause.
// https://tc39.es/ecma262/#sec-switch-statement
InterpreterNodeScope node_scope { interpreter, *this };
auto discriminant_result = m_discriminant->execute(interpreter, global_object);
if (interpreter.exception())
return {};
// Optimization: Avoid creating a lexical environment if there are no lexical declarations.
Optional<TemporaryChange<Environment*>> lexical_environment_changer;
if (has_lexical_declarations()) {
auto* old_environment = interpreter.lexical_environment();
auto* block_environment = new_declarative_environment(*old_environment);
block_declaration_instantiation(global_object, block_environment);
lexical_environment_changer.emplace(interpreter.vm().running_execution_context().lexical_environment, block_environment);
}
Optional<size_t> first_passing_case;
for (size_t i = 0; i < m_cases.size(); ++i) {
auto& switch_case = m_cases[i];
if (switch_case.test()) {
auto test_result = switch_case.test()->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (is_strictly_equal(discriminant_result, test_result)) {
first_passing_case = i;
break;
}
}
}
// FIXME: we could optimize and store the location of the default case in a member variable.
if (!first_passing_case.has_value()) {
for (size_t i = 0; i < m_cases.size(); ++i) {
auto& switch_case = m_cases[i];
if (!switch_case.test()) {
first_passing_case = i;
break;
}
}
}
auto last_value = js_undefined();
if (!first_passing_case.has_value()) {
return last_value;
}
VERIFY(first_passing_case.value() < m_cases.size());
for (size_t i = first_passing_case.value(); i < m_cases.size(); ++i) {
auto& switch_case = m_cases[i];
for (auto& statement : switch_case.children()) {
auto value = statement.execute(interpreter, global_object);
if (!value.is_empty())
last_value = value;
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) {
// No stop_unwind(), the outer loop will handle that - we just need to break out of the switch/case.
return last_value;
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) {
interpreter.vm().stop_unwind();
return last_value;
} else {
return last_value;
}
}
}
}
return last_value;
}
Value SwitchCase::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// NOTE: SwitchCase execution is handled by SwitchStatement.
VERIFY_NOT_REACHED();
return {};
}
Value BreakStatement::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
interpreter.vm().unwind(ScopeType::Breakable, m_target_label);
return {};
}
Value ContinueStatement::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
interpreter.vm().unwind(ScopeType::Continuable, m_target_label);
return {};
}
void SwitchStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_discriminant->dump(indent + 1);
for (auto& switch_case : m_cases) {
switch_case.dump(indent + 1);
}
}
void SwitchCase::dump(int indent) const
{
print_indent(indent + 1);
if (m_test) {
outln("(Test)");
m_test->dump(indent + 2);
} else {
outln("(Default)");
}
print_indent(indent + 1);
outln("(Consequent)");
ScopeNode::dump(indent + 2);
}
Value ConditionalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
auto test_result = m_test->execute(interpreter, global_object);
if (interpreter.exception())
return {};
Value result;
if (test_result.to_boolean()) {
result = m_consequent->execute(interpreter, global_object);
} else {
result = m_alternate->execute(interpreter, global_object);
}
if (interpreter.exception())
return {};
return result;
}
void ConditionalExpression::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
outln("(Test)");
m_test->dump(indent + 2);
print_indent(indent + 1);
outln("(Consequent)");
m_consequent->dump(indent + 2);
print_indent(indent + 1);
outln("(Alternate)");
m_alternate->dump(indent + 2);
}
void SequenceExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value SequenceExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
Value last_value;
for (auto& expression : m_expressions) {
last_value = expression.execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
return last_value;
}
Value DebuggerStatement::execute(Interpreter& interpreter, GlobalObject&) const
{
InterpreterNodeScope node_scope { interpreter, *this };
// Sorry, no JavaScript debugger available (yet)!
return {};
}
void ScopeNode::for_each_lexically_scoped_declaration(IteratorOrVoidFunction<Declaration const&>&& callback) const
{
for (auto& declaration : m_lexical_declarations) {
if (callback(declaration) == IterationDecision::Break)
break;
}
}
void ScopeNode::for_each_lexically_declared_name(IteratorOrVoidFunction<FlyString const&>&& callback) const
{
auto running = true;
for (auto& declaration : m_lexical_declarations) {
declaration.for_each_bound_name([&](auto const& name) {
if (callback(name) == IterationDecision::Break) {
running = false;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (!running)
break;
}
}
void ScopeNode::for_each_var_declared_name(IteratorOrVoidFunction<FlyString const&>&& callback) const
{
auto running = true;
for (auto& declaration : m_var_declarations) {
declaration.for_each_bound_name([&](auto const& name) {
if (callback(name) == IterationDecision::Break) {
running = false;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (!running)
break;
}
}
void ScopeNode::for_each_var_function_declaration_in_reverse_order(IteratorOrVoidFunction<FunctionDeclaration const&>&& callback) const
{
for (ssize_t i = m_var_declarations.size() - 1; i >= 0; i--) {
auto& declaration = m_var_declarations[i];
if (is<FunctionDeclaration>(declaration)) {
if (callback(static_cast<FunctionDeclaration const&>(declaration)) == IterationDecision::Break)
break;
}
}
}
void ScopeNode::for_each_var_scoped_variable_declaration(IteratorOrVoidFunction<VariableDeclaration const&>&& callback) const
{
for (auto& declaration : m_var_declarations) {
if (!is<FunctionDeclaration>(declaration)) {
VERIFY(is<VariableDeclaration>(declaration));
if (callback(static_cast<VariableDeclaration const&>(declaration)) == IterationDecision::Break)
break;
}
}
}
void ScopeNode::for_each_function_hoistable_with_annexB_extension(IteratorOrVoidFunction<FunctionDeclaration&>&& callback) const
{
for (auto& function : m_functions_hoistable_with_annexB_extension) {
// We need const_cast here since it might have to set a property on function declaration.
if (callback(const_cast<FunctionDeclaration&>(function)) == IterationDecision::Break)
break;
}
}
void ScopeNode::add_lexical_declaration(NonnullRefPtr<Declaration> declaration)
{
m_lexical_declarations.append(move(declaration));
}
void ScopeNode::add_var_scoped_declaration(NonnullRefPtr<Declaration> declaration)
{
m_var_declarations.append(move(declaration));
}
void ScopeNode::add_hoisted_function(NonnullRefPtr<FunctionDeclaration> declaration)
{
m_functions_hoistable_with_annexB_extension.append(move(declaration));
}
Value ImportStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
dbgln("Modules are not fully supported yet!");
interpreter.vm().throw_exception<InternalError>(global_object, ErrorType::NotImplemented, "'import' in modules");
return {};
}
Value ExportStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
InterpreterNodeScope node_scope { interpreter, *this };
if (m_statement)
return m_statement->execute(interpreter, global_object);
return {};
}
void ExportStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
outln("(ExportEntries)");
auto string_or_null = [](String const& string) -> String {
if (string.is_empty()) {
return "null";
}
return String::formatted("\"{}\"", string);
};
for (auto& entry : m_entries) {
print_indent(indent + 2);
outln("ModuleRequest: {}, ImportName: {}, LocalName: {}, ExportName: {}", string_or_null(entry.module_request), entry.kind == ExportEntry::ModuleRequest ? string_or_null(entry.local_or_import_name) : "null", entry.kind != ExportEntry::ModuleRequest ? string_or_null(entry.local_or_import_name) : "null", string_or_null(entry.export_name));
}
}
void ImportStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_entries.is_empty()) {
// direct from "module" import
outln("Entire module '{}'", m_module_request);
} else {
outln("(ExportEntries) from {}", m_module_request);
for (auto& entry : m_entries) {
print_indent(indent + 2);
outln("ImportName: {}, LocalName: {}", entry.import_name, entry.local_name);
}
}
}
bool ExportStatement::has_export(StringView export_name) const
{
return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
return entry.export_name == export_name;
});
}
bool ImportStatement::has_bound_name(StringView name) const
{
return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
return entry.local_name == name;
});
}
// 14.2.3 BlockDeclarationInstantiation ( code, env ), https://tc39.es/ecma262/#sec-blockdeclarationinstantiation
void ScopeNode::block_declaration_instantiation(GlobalObject& global_object, Environment* environment) const
{
// See also B.3.2.6 Changes to BlockDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-blockdeclarationinstantiation
VERIFY(environment);
auto* private_environment = global_object.vm().running_execution_context().private_environment;
for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
auto is_constant_declaration = declaration.is_constant_declaration();
declaration.for_each_bound_name([&](auto const& name) {
if (is_constant_declaration) {
MUST(environment->create_immutable_binding(global_object, name, true));
} else {
if (!MUST(environment->has_binding(name)))
MUST(environment->create_mutable_binding(global_object, name, false));
}
});
if (is<FunctionDeclaration>(declaration)) {
auto& function_declaration = static_cast<FunctionDeclaration const&>(declaration);
auto* function = ECMAScriptFunctionObject::create(global_object, function_declaration.name(), function_declaration.body(), function_declaration.parameters(), function_declaration.function_length(), environment, private_environment, function_declaration.kind(), function_declaration.is_strict_mode(), function_declaration.might_need_arguments_object(), function_declaration.contains_direct_call_to_eval());
VERIFY(is<DeclarativeEnvironment>(*environment));
static_cast<DeclarativeEnvironment&>(*environment).initialize_or_set_mutable_binding({}, global_object, function_declaration.name(), function);
}
});
}
// 16.1.7 GlobalDeclarationInstantiation ( script, env ), https://tc39.es/ecma262/#sec-globaldeclarationinstantiation
ThrowCompletionOr<void> Program::global_declaration_instantiation(Interpreter& interpreter, GlobalObject& global_object, GlobalEnvironment& global_environment) const
{
for_each_lexically_declared_name([&](FlyString const& name) {
if (global_environment.has_var_declaration(name) || global_environment.has_lexical_declaration(name)) {
interpreter.vm().throw_exception<SyntaxError>(global_object, ErrorType::TopLevelVariableAlreadyDeclared, name);
return IterationDecision::Break;
}
auto restricted_global = global_environment.has_restricted_global_property(name);
if (interpreter.exception())
return IterationDecision::Break;
if (restricted_global)
interpreter.vm().throw_exception<SyntaxError>(global_object, ErrorType::RestrictedGlobalProperty, name);
return IterationDecision::Continue;
});
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
for_each_var_declared_name([&](auto const& name) {
if (global_environment.has_lexical_declaration(name)) {
interpreter.vm().throw_exception<SyntaxError>(global_object, ErrorType::TopLevelVariableAlreadyDeclared, name);
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
HashTable<FlyString> declared_function_names;
Vector<FunctionDeclaration const&> functions_to_initialize;
for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) {
if (declared_function_names.set(function.name()) != AK::HashSetResult::InsertedNewEntry)
return IterationDecision::Continue;
auto function_definable = global_environment.can_declare_global_function(function.name());
if (interpreter.exception())
return IterationDecision::Break;
if (!function_definable) {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::CannotDeclareGlobalFunction, function.name());
return IterationDecision::Break;
}
functions_to_initialize.append(function);
return IterationDecision::Continue;
});
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
HashTable<FlyString> declared_var_names;
for_each_var_scoped_variable_declaration([&](Declaration const& declaration) {
declaration.for_each_bound_name([&](auto const& name) {
if (declared_function_names.contains(name))
return IterationDecision::Continue;
auto var_definable = global_environment.can_declare_global_var(name);
if (interpreter.exception())
return IterationDecision::Break;
if (!var_definable) {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::CannotDeclareGlobalVariable, name);
return IterationDecision::Break;
}
declared_var_names.set(name);
return IterationDecision::Continue;
});
if (interpreter.exception())
return IterationDecision::Break;
return IterationDecision::Continue;
});
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
if (!m_is_strict_mode) {
for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) {
auto& function_name = function_declaration.name();
if (global_environment.has_lexical_declaration(function_name))
return IterationDecision::Continue;
auto function_definable = global_environment.can_declare_global_function(function_name);
if (interpreter.exception())
return IterationDecision::Break;
if (!function_definable) {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::CannotDeclareGlobalFunction, function_name);
return IterationDecision::Break;
}
if (!declared_function_names.contains(function_name) && !declared_var_names.contains(function_name)) {
global_environment.create_global_var_binding(function_name, false);
if (interpreter.exception())
return IterationDecision::Break;
declared_function_names.set(function_name);
}
function_declaration.set_should_do_additional_annexB_steps();
return IterationDecision::Continue;
});
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
// We should not use declared function names below here anymore since these functions are not in there in the spec.
declared_function_names.clear();
}
PrivateEnvironment* private_environment = nullptr;
for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
declaration.for_each_bound_name([&](auto const& name) {
if (declaration.is_constant_declaration())
(void)global_environment.create_immutable_binding(global_object, name, true);
else
(void)global_environment.create_mutable_binding(global_object, name, false);
if (interpreter.exception())
return IterationDecision::Break;
return IterationDecision::Continue;
});
if (interpreter.exception())
return IterationDecision::Break;
return IterationDecision::Continue;
});
for (auto& declaration : functions_to_initialize) {
auto* function = ECMAScriptFunctionObject::create(global_object, declaration.name(), declaration.body(), declaration.parameters(), declaration.function_length(), &global_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval());
global_environment.create_global_function_binding(declaration.name(), function, false);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
}
for (auto& var_name : declared_var_names) {
global_environment.create_global_var_binding(var_name, false);
if (auto* exception = interpreter.exception())
return throw_completion(exception->value());
}
return {};
}
}