ladybird/Kernel/Heap/kmalloc.cpp
Jesse Buhagiar bd33c66273 Kernel: Move Kernel mapping to 0xc0000000
The kernel is now no longer identity mapped to the bottom 8MiB of
memory, and is now mapped at the higher address of `0xc0000000`.

The lower ~1MiB of memory (from GRUB's mmap), however is still
identity mapped to provide an easy way for the kernel to get
physical pages for things such as DMA etc. These could later be
mapped to the higher address too, as I'm not too sure how to
go about doing this elegantly without a lot of address subtractions.
2019-11-22 16:23:23 +01:00

216 lines
5.4 KiB
C++

/*
* Really really *really* Q&D malloc() and free() implementations
* just to get going. Don't ever let anyone see this shit. :^)
*/
#include <AK/Assertions.h>
#include <AK/Types.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/StdLib.h>
#define SANITIZE_KMALLOC
struct [[gnu::packed]] allocation_t
{
size_t start;
size_t nchunk;
};
#define KMALLOC_RANGE_BASE (0xc0000000 + (4 * MB))
#define CHUNK_SIZE 8
#define POOL_SIZE (3 * MB)
#define ETERNAL_RANGE_BASE (0xc0000000 + (2 * MB))
#define ETERNAL_RANGE_SIZE (2 * MB)
static u8 alloc_map[POOL_SIZE / CHUNK_SIZE / 8];
volatile size_t sum_alloc = 0;
volatile size_t sum_free = POOL_SIZE;
volatile size_t kmalloc_sum_eternal = 0;
u32 g_kmalloc_call_count;
u32 g_kfree_call_count;
bool g_dump_kmalloc_stacks;
static u8* s_next_eternal_ptr;
static u8* s_end_of_eternal_range;
bool is_kmalloc_address(const void* ptr)
{
if (ptr >= (u8*)ETERNAL_RANGE_BASE && ptr < s_next_eternal_ptr)
return true;
return (size_t)ptr >= KMALLOC_RANGE_BASE && (size_t)ptr <= (KMALLOC_RANGE_BASE + POOL_SIZE);
}
void kmalloc_init()
{
memset(&alloc_map, 0, sizeof(alloc_map));
memset((void*)KMALLOC_RANGE_BASE, 0, POOL_SIZE);
kmalloc_sum_eternal = 0;
sum_alloc = 0;
sum_free = POOL_SIZE;
s_next_eternal_ptr = (u8*)ETERNAL_RANGE_BASE;
s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE;
}
void* kmalloc_eternal(size_t size)
{
void* ptr = s_next_eternal_ptr;
s_next_eternal_ptr += size;
ASSERT(s_next_eternal_ptr < s_end_of_eternal_range);
kmalloc_sum_eternal += size;
return ptr;
}
void* kmalloc_aligned(size_t size, size_t alignment)
{
void* ptr = kmalloc(size + alignment + sizeof(void*));
size_t max_addr = (size_t)ptr + alignment;
void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
((void**)aligned_ptr)[-1] = ptr;
return aligned_ptr;
}
void kfree_aligned(void* ptr)
{
kfree(((void**)ptr)[-1]);
}
void* kmalloc_page_aligned(size_t size)
{
void* ptr = kmalloc_aligned(size, PAGE_SIZE);
size_t d = (size_t)ptr;
ASSERT((d & PAGE_MASK) == d);
return ptr;
}
void* kmalloc_impl(size_t size)
{
InterruptDisabler disabler;
++g_kmalloc_call_count;
if (g_dump_kmalloc_stacks && ksyms_ready) {
dbgprintf("kmalloc(%u)\n", size);
dump_backtrace();
}
// We need space for the allocation_t structure at the head of the block.
size_t real_size = size + sizeof(allocation_t);
if (sum_free < real_size) {
dump_backtrace();
kprintf("%s(%u) kmalloc(): PANIC! Out of memory (sucks, dude)\nsum_free=%u, real_size=%u\n", current->process().name().characters(), current->pid(), sum_free, real_size);
hang();
}
size_t chunks_needed = real_size / CHUNK_SIZE;
if (real_size % CHUNK_SIZE)
++chunks_needed;
size_t chunks_here = 0;
size_t first_chunk = 0;
for (size_t i = 0; i < (POOL_SIZE / CHUNK_SIZE / 8); ++i) {
if (alloc_map[i] == 0xff) {
// Skip over completely full bucket.
chunks_here = 0;
continue;
}
// FIXME: This scan can be optimized further with LZCNT.
for (size_t j = 0; j < 8; ++j) {
if (!(alloc_map[i] & (1 << j))) {
if (chunks_here == 0) {
// Mark where potential allocation starts.
first_chunk = i * 8 + j;
}
++chunks_here;
if (chunks_here == chunks_needed) {
auto* a = (allocation_t*)(KMALLOC_RANGE_BASE + (first_chunk * CHUNK_SIZE));
u8* ptr = (u8*)a;
ptr += sizeof(allocation_t);
a->nchunk = chunks_needed;
a->start = first_chunk;
for (size_t k = first_chunk; k < (first_chunk + chunks_needed); ++k) {
alloc_map[k / 8] |= 1 << (k % 8);
}
sum_alloc += a->nchunk * CHUNK_SIZE;
sum_free -= a->nchunk * CHUNK_SIZE;
#ifdef SANITIZE_KMALLOC
memset(ptr, 0xbb, (a->nchunk * CHUNK_SIZE) - sizeof(allocation_t));
#endif
return ptr;
}
} else {
// This is in use, so restart chunks_here counter.
chunks_here = 0;
}
}
}
kprintf("%s(%u) kmalloc(): PANIC! Out of memory (no suitable block for size %u)\n", current->process().name().characters(), current->pid(), size);
dump_backtrace();
hang();
}
void kfree(void* ptr)
{
if (!ptr)
return;
InterruptDisabler disabler;
++g_kfree_call_count;
auto* a = (allocation_t*)((((u8*)ptr) - sizeof(allocation_t)));
for (size_t k = a->start; k < (a->start + a->nchunk); ++k)
alloc_map[k / 8] &= ~(1 << (k % 8));
sum_alloc -= a->nchunk * CHUNK_SIZE;
sum_free += a->nchunk * CHUNK_SIZE;
#ifdef SANITIZE_KMALLOC
memset(a, 0xaa, a->nchunk * CHUNK_SIZE);
#endif
}
void* operator new(size_t size)
{
return kmalloc(size);
}
void* operator new[](size_t size)
{
return kmalloc(size);
}
void operator delete(void* ptr)
{
return kfree(ptr);
}
void operator delete[](void* ptr)
{
return kfree(ptr);
}
void operator delete(void* ptr, size_t)
{
return kfree(ptr);
}
void operator delete[](void* ptr, size_t)
{
return kfree(ptr);
}