ladybird/Kernel/Heap/SlabAllocator.cpp
Andreas Kling 7ef9c703d2 Kernel: Unbreak SlabAllocator after startup-time constructors
Now that the kernel supports startup-time constructors, we were first
doing slab_alloc_init(), and then the constructors ran later on,
zeroing out the freelist pointers.

This meant that all slab allocators thought they were completelty
exhausted and forwarded all requests to kmalloc() instead.
2019-11-15 12:48:39 +01:00

130 lines
3.4 KiB
C++

#include <AK/Assertions.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/VM/Region.h>
template<size_t templated_slab_size>
class SlabAllocator {
public:
SlabAllocator() {}
void init(size_t size)
{
m_base = kmalloc_eternal(size);
m_end = (u8*)m_base + size;
FreeSlab* slabs = (FreeSlab*)m_base;
size_t slab_count = size / templated_slab_size;
for (size_t i = 1; i < slab_count; ++i) {
slabs[i].next = &slabs[i - 1];
}
slabs[0].next = nullptr;
m_freelist = &slabs[slab_count - 1];
m_num_allocated = 0;
m_num_free = slab_count;
}
constexpr size_t slab_size() const { return templated_slab_size; }
void* alloc()
{
InterruptDisabler disabler;
if (!m_freelist)
return kmalloc(slab_size());
ASSERT(m_freelist);
void* ptr = m_freelist;
m_freelist = m_freelist->next;
++m_num_allocated;
--m_num_free;
return ptr;
}
void dealloc(void* ptr)
{
InterruptDisabler disabler;
ASSERT(ptr);
if (ptr < m_base || ptr >= m_end) {
kfree(ptr);
return;
}
((FreeSlab*)ptr)->next = m_freelist;
m_freelist = (FreeSlab*)ptr;
++m_num_allocated;
--m_num_free;
}
size_t num_allocated() const { return m_num_allocated; }
size_t num_free() const { return m_num_free; }
private:
struct FreeSlab {
FreeSlab* next { nullptr };
char padding[templated_slab_size - sizeof(FreeSlab*)];
};
// NOTE: These are not default-initialized to prevent an init-time constructor from overwriting them
FreeSlab* m_freelist;
size_t m_num_allocated;
size_t m_num_free;
void* m_base;
void* m_end;
static_assert(sizeof(FreeSlab) == templated_slab_size);
};
static SlabAllocator<8> s_slab_allocator_8;
static SlabAllocator<16> s_slab_allocator_16;
static SlabAllocator<32> s_slab_allocator_32;
static SlabAllocator<48> s_slab_allocator_48;
static_assert(sizeof(Region) <= s_slab_allocator_48.slab_size());
template<typename Callback>
void for_each_allocator(Callback callback)
{
callback(s_slab_allocator_8);
callback(s_slab_allocator_16);
callback(s_slab_allocator_32);
callback(s_slab_allocator_48);
}
void slab_alloc_init()
{
s_slab_allocator_8.init(384 * KB);
s_slab_allocator_16.init(128 * KB);
s_slab_allocator_32.init(128 * KB);
s_slab_allocator_48.init(128 * KB);
}
void* slab_alloc(size_t slab_size)
{
if (slab_size <= 8)
return s_slab_allocator_8.alloc();
if (slab_size <= 16)
return s_slab_allocator_16.alloc();
if (slab_size <= 32)
return s_slab_allocator_32.alloc();
if (slab_size <= 48)
return s_slab_allocator_48.alloc();
ASSERT_NOT_REACHED();
}
void slab_dealloc(void* ptr, size_t slab_size)
{
if (slab_size <= 8)
return s_slab_allocator_8.dealloc(ptr);
if (slab_size <= 16)
return s_slab_allocator_16.dealloc(ptr);
if (slab_size <= 32)
return s_slab_allocator_32.dealloc(ptr);
if (slab_size <= 48)
return s_slab_allocator_48.dealloc(ptr);
ASSERT_NOT_REACHED();
}
void slab_alloc_stats(Function<void(size_t slab_size, size_t allocated, size_t free)> callback)
{
for_each_allocator([&](auto& allocator) {
callback(allocator.slab_size(), allocator.num_allocated(), allocator.num_free());
});
}