ladybird/Kernel/VM/MemoryManager.cpp
Tom c8d9f1b9c9 Kernel: Make copy_to/from_user safe and remove unnecessary checks
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.

So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.

To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.

Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
2020-09-13 21:19:15 +02:00

811 lines
31 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Assertions.h>
#include <AK/Memory.h>
#include <AK/StringView.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/CMOS.h>
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Multiboot.h>
#include <Kernel/Process.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/ContiguousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/PhysicalRegion.h>
#include <Kernel/VM/PurgeableVMObject.h>
#include <Kernel/VM/SharedInodeVMObject.h>
#include <Kernel/StdLib.h>
//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG
extern u8* start_of_kernel_image;
extern u8* end_of_kernel_image;
extern FlatPtr start_of_kernel_text;
extern FlatPtr start_of_kernel_data;
extern FlatPtr end_of_kernel_bss;
namespace Kernel {
// NOTE: We can NOT use AK::Singleton for this class, because
// MemoryManager::initialize is called *before* global constructors are
// run. If we do, then AK::Singleton would get re-initialized, causing
// the memory manager to be initialized twice!
static MemoryManager* s_the;
RecursiveSpinLock s_mm_lock;
MemoryManager& MM
{
return *s_the;
}
bool MemoryManager::is_initialized()
{
return s_the != nullptr;
}
MemoryManager::MemoryManager()
{
ScopedSpinLock lock(s_mm_lock);
m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
parse_memory_map();
write_cr3(kernel_page_directory().cr3());
protect_kernel_image();
m_shared_zero_page = allocate_user_physical_page();
}
MemoryManager::~MemoryManager()
{
}
void MemoryManager::protect_kernel_image()
{
// Disable writing to the kernel text and rodata segments.
for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_writable(false);
}
if (Processor::current().has_feature(CPUFeature::NX)) {
// Disable execution of the kernel data and bss segments, as well as the kernel heap.
for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_execute_disabled(true);
}
for (size_t i = FlatPtr(kmalloc_start); i < FlatPtr(kmalloc_end); i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_execute_disabled(true);
}
}
}
void MemoryManager::parse_memory_map()
{
RefPtr<PhysicalRegion> region;
bool region_is_super = false;
// We need to make sure we exclude the kmalloc range as well as the kernel image.
// The kmalloc range directly follows the kernel image
const PhysicalAddress used_range_start(virtual_to_low_physical(FlatPtr(&start_of_kernel_image)));
const PhysicalAddress used_range_end(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(kmalloc_end))));
klog() << "MM: kernel range: " << used_range_start << " - " << PhysicalAddress(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(&end_of_kernel_image))));
klog() << "MM: kmalloc range: " << PhysicalAddress(virtual_to_low_physical(FlatPtr(kmalloc_start))) << " - " << used_range_end;
auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
continue;
// FIXME: Maybe make use of stuff below the 1MiB mark?
if (mmap->addr < (1 * MiB))
continue;
if ((mmap->addr + mmap->len) > 0xffffffff)
continue;
auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
if (diff != 0) {
klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
diff = PAGE_SIZE - diff;
mmap->addr += diff;
mmap->len -= diff;
}
if ((mmap->len % PAGE_SIZE) != 0) {
klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
mmap->len -= mmap->len % PAGE_SIZE;
}
if (mmap->len < PAGE_SIZE) {
klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
continue;
}
#ifdef MM_DEBUG
klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
#endif
for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
auto addr = PhysicalAddress(page_base);
if (addr.get() < used_range_end.get() && addr.get() >= used_range_start.get())
continue;
if (page_base < 7 * MiB) {
// nothing
} else if (page_base >= 7 * MiB && page_base < 8 * MiB) {
if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_super_physical_regions.last();
region_is_super = true;
} else {
region->expand(region->lower(), addr);
}
} else {
if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_user_physical_regions.last();
region_is_super = false;
} else {
region->expand(region->lower(), addr);
}
}
}
}
for (auto& region : m_super_physical_regions) {
m_super_physical_pages += region.finalize_capacity();
klog() << "Super physical region: " << region.lower() << " - " << region.upper();
}
for (auto& region : m_user_physical_regions) {
m_user_physical_pages += region.finalize_capacity();
klog() << "User physical region: " << region.lower() << " - " << region.upper();
}
ASSERT(m_super_physical_pages > 0);
ASSERT(m_user_physical_pages > 0);
}
PageTableEntry* MemoryManager::pte(const PageDirectory& page_directory, VirtualAddress vaddr)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(s_mm_lock.own_lock());
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
const PageDirectoryEntry& pde = pd[page_directory_index];
if (!pde.is_present())
return nullptr;
return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
}
PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(s_mm_lock.own_lock());
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
auto* pd = quickmap_pd(page_directory, page_directory_table_index);
PageDirectoryEntry& pde = pd[page_directory_index];
if (!pde.is_present()) {
#ifdef MM_DEBUG
dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
#endif
bool did_purge = false;
auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
if (!page_table) {
dbg() << "MM: Unable to allocate page table to map " << vaddr;
return nullptr;
}
if (did_purge) {
// If any memory had to be purged, ensure_pte may have been called as part
// of the purging process. So we need to re-map the pd in this case to ensure
// we're writing to the correct underlying physical page
pd = quickmap_pd(page_directory, page_directory_table_index);
ASSERT(&pde == &pd[page_directory_index]); // Sanity check
ASSERT(!pde.is_present()); // Should have not changed
}
#ifdef MM_DEBUG
dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
#endif
pde.set_page_table_base(page_table->paddr().get());
pde.set_user_allowed(true);
pde.set_present(true);
pde.set_writable(true);
pde.set_global(&page_directory == m_kernel_page_directory.ptr());
// Use page_directory_table_index and page_directory_index as key
// This allows us to release the page table entry when no longer needed
auto result = page_directory.m_page_tables.set(vaddr.get() & ~0x1fffff, move(page_table));
ASSERT(result == AK::HashSetResult::InsertedNewEntry);
}
return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
}
void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(s_mm_lock.own_lock());
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
auto* pd = quickmap_pd(page_directory, page_directory_table_index);
PageDirectoryEntry& pde = pd[page_directory_index];
if (pde.is_present()) {
auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
auto& pte = page_table[page_table_index];
pte.clear();
if (is_last_release || page_table_index == 0x1ff) {
// If this is the last PTE in a region or the last PTE in a page table then
// check if we can also release the page table
bool all_clear = true;
for (u32 i = 0; i <= 0x1ff; i++) {
if (!page_table[i].is_null()) {
all_clear = false;
break;
}
}
if (all_clear) {
pde.clear();
auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
ASSERT(result);
#ifdef MM_DEBUG
dbg() << "MM: Released page table for " << VirtualAddress(vaddr.get() & ~0x1fffff);
#endif
}
}
}
}
void MemoryManager::initialize(u32 cpu)
{
auto mm_data = new MemoryManagerData;
#ifdef MM_DEBUG
dbg() << "MM: Processor #" << cpu << " specific data at " << VirtualAddress(mm_data);
#endif
Processor::current().set_mm_data(*mm_data);
if (cpu == 0) {
s_the = new MemoryManager;
kmalloc_enable_expand();
}
}
Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
for (auto& region : MM.m_kernel_regions) {
if (region.contains(vaddr))
return &region;
}
return nullptr;
}
Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
for (auto& region : process.m_regions) {
if (region.contains(vaddr))
return &region;
}
#ifdef MM_DEBUG
dbg() << process << " Couldn't find user region for " << vaddr;
#endif
return nullptr;
}
Region* MemoryManager::find_region_from_vaddr(Process& process, VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
if (auto* region = user_region_from_vaddr(process, vaddr))
return region;
return kernel_region_from_vaddr(vaddr);
}
const Region* MemoryManager::find_region_from_vaddr(const Process& process, VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
if (auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr))
return region;
return kernel_region_from_vaddr(vaddr);
}
Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
{
ScopedSpinLock lock(s_mm_lock);
if (auto* region = kernel_region_from_vaddr(vaddr))
return region;
auto page_directory = PageDirectory::find_by_cr3(read_cr3());
if (!page_directory)
return nullptr;
ASSERT(page_directory->process());
return user_region_from_vaddr(*page_directory->process(), vaddr);
}
PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Thread::current() != nullptr);
ScopedSpinLock lock(s_mm_lock);
if (Processor::current().in_irq()) {
dbg() << "CPU[" << Processor::current().id() << "] BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr() << ", irq level: " << Processor::current().in_irq();
dump_kernel_regions();
return PageFaultResponse::ShouldCrash;
}
#ifdef PAGE_FAULT_DEBUG
dbg() << "MM: CPU[" << Processor::current().id() << "] handle_page_fault(" << String::format("%w", fault.code()) << ") at " << fault.vaddr();
#endif
auto* region = find_region_from_vaddr(fault.vaddr());
if (!region) {
klog() << "CPU[" << Processor::current().id() << "] NP(error) fault at invalid address " << fault.vaddr();
return PageFaultResponse::ShouldCrash;
}
return region->handle_fault(fault);
}
OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
if (!range.is_valid())
return nullptr;
auto vmobject = ContiguousVMObject::create_with_size(size);
auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
if (!region)
return nullptr;
return region;
}
OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
if (!range.is_valid())
return nullptr;
auto vmobject = AnonymousVMObject::create_with_size(size);
auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
if (!region)
return nullptr;
if (should_commit && !region->commit())
return nullptr;
return region;
}
OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
if (!range.is_valid())
return nullptr;
auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
if (!vmobject)
return nullptr;
return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
}
OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
if (!range.is_valid())
return nullptr;
auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
if (!vmobject)
return nullptr;
return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
}
OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
{
return allocate_kernel_region(size, name, access, true, true, cacheable);
}
OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ScopedSpinLock lock(s_mm_lock);
OwnPtr<Region> region;
if (user_accessible)
region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
else
region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
if (region)
region->map(kernel_page_directory());
return region;
}
OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
if (!range.is_valid())
return nullptr;
return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
}
void MemoryManager::deallocate_user_physical_page(const PhysicalPage& page)
{
ScopedSpinLock lock(s_mm_lock);
for (auto& region : m_user_physical_regions) {
if (!region.contains(page)) {
klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
continue;
}
region.return_page(page);
--m_user_physical_pages_used;
return;
}
klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
ASSERT_NOT_REACHED();
}
RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
{
ASSERT(s_mm_lock.is_locked());
RefPtr<PhysicalPage> page;
for (auto& region : m_user_physical_regions) {
page = region.take_free_page(false);
if (!page.is_null())
break;
}
return page;
}
RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
{
ScopedSpinLock lock(s_mm_lock);
auto page = find_free_user_physical_page();
bool purged_pages = false;
if (!page) {
// We didn't have a single free physical page. Let's try to free something up!
// First, we look for a purgeable VMObject in the volatile state.
for_each_vmobject_of_type<PurgeableVMObject>([&](auto& vmobject) {
int purged_page_count = vmobject.purge_with_interrupts_disabled({});
if (purged_page_count) {
klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &vmobject << "}";
page = find_free_user_physical_page();
purged_pages = true;
ASSERT(page);
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (!page) {
klog() << "MM: no user physical pages available";
return {};
}
}
#ifdef MM_DEBUG
dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
#endif
if (should_zero_fill == ShouldZeroFill::Yes) {
auto* ptr = quickmap_page(*page);
memset(ptr, 0, PAGE_SIZE);
unquickmap_page();
}
if (did_purge)
*did_purge = purged_pages;
++m_user_physical_pages_used;
return page;
}
void MemoryManager::deallocate_supervisor_physical_page(const PhysicalPage& page)
{
ScopedSpinLock lock(s_mm_lock);
for (auto& region : m_super_physical_regions) {
if (!region.contains(page)) {
klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
continue;
}
region.return_page(page);
--m_super_physical_pages_used;
return;
}
klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
ASSERT_NOT_REACHED();
}
NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
{
ASSERT(!(size % PAGE_SIZE));
ScopedSpinLock lock(s_mm_lock);
size_t count = ceil_div(size, PAGE_SIZE);
NonnullRefPtrVector<PhysicalPage> physical_pages;
for (auto& region : m_super_physical_regions) {
physical_pages = region.take_contiguous_free_pages((count), true);
if (physical_pages.is_empty())
continue;
}
if (physical_pages.is_empty()) {
if (m_super_physical_regions.is_empty()) {
klog() << "MM: no super physical regions available (?)";
}
klog() << "MM: no super physical pages available";
ASSERT_NOT_REACHED();
return {};
}
auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
m_super_physical_pages_used += count;
return physical_pages;
}
RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
{
ScopedSpinLock lock(s_mm_lock);
RefPtr<PhysicalPage> page;
for (auto& region : m_super_physical_regions) {
page = region.take_free_page(true);
if (page.is_null())
continue;
}
if (!page) {
if (m_super_physical_regions.is_empty()) {
klog() << "MM: no super physical regions available (?)";
}
klog() << "MM: no super physical pages available";
ASSERT_NOT_REACHED();
return {};
}
#ifdef MM_DEBUG
dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
#endif
fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
++m_super_physical_pages_used;
return page;
}
void MemoryManager::enter_process_paging_scope(Process& process)
{
auto current_thread = Thread::current();
ASSERT(current_thread != nullptr);
ScopedSpinLock lock(s_mm_lock);
current_thread->tss().cr3 = process.page_directory().cr3();
write_cr3(process.page_directory().cr3());
}
void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
{
#ifdef MM_DEBUG
dbg() << "MM: Flush " << page_count << " pages at " << vaddr << " on CPU#" << Processor::current().id();
#endif
Processor::flush_tlb_local(vaddr, page_count);
}
void MemoryManager::flush_tlb(VirtualAddress vaddr, size_t page_count)
{
#ifdef MM_DEBUG
dbg() << "MM: Flush " << page_count << " pages at " << vaddr;
#endif
Processor::flush_tlb(vaddr, page_count);
}
extern "C" PageTableEntry boot_pd3_pt1023[1024];
PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
{
ASSERT(s_mm_lock.own_lock());
auto& pte = boot_pd3_pt1023[4];
auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
if (pte.physical_page_base() != pd_paddr.as_ptr()) {
#ifdef MM_DEBUG
dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
#endif
pte.set_physical_page_base(pd_paddr.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
// Because we must continue to hold the MM lock while we use this
// mapping, it is sufficient to only flush on the current CPU. Other
// CPUs trying to use this API must wait on the MM lock anyway
flush_tlb_local(VirtualAddress(0xffe04000));
}
return (PageDirectoryEntry*)0xffe04000;
}
PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
{
ASSERT(s_mm_lock.own_lock());
auto& pte = boot_pd3_pt1023[0];
if (pte.physical_page_base() != pt_paddr.as_ptr()) {
#ifdef MM_DEBUG
dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe00000 in pte @ " << &pte;
#endif
pte.set_physical_page_base(pt_paddr.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
// Because we must continue to hold the MM lock while we use this
// mapping, it is sufficient to only flush on the current CPU. Other
// CPUs trying to use this API must wait on the MM lock anyway
flush_tlb_local(VirtualAddress(0xffe00000));
}
return (PageTableEntry*)0xffe00000;
}
u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
{
ASSERT_INTERRUPTS_DISABLED();
auto& mm_data = get_data();
mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
ScopedSpinLock lock(s_mm_lock);
u32 pte_idx = 8 + Processor::current().id();
VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
auto& pte = boot_pd3_pt1023[pte_idx];
if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
#ifdef MM_DEBUG
dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe08000 in pte @ " << &pte;
#endif
pte.set_physical_page_base(physical_page.paddr().get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb_local(vaddr);
}
return vaddr.as_ptr();
}
void MemoryManager::unquickmap_page()
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(s_mm_lock);
auto& mm_data = get_data();
ASSERT(mm_data.m_quickmap_in_use.is_locked());
u32 pte_idx = 8 + Processor::current().id();
VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
auto& pte = boot_pd3_pt1023[pte_idx];
pte.clear();
flush_tlb_local(vaddr);
mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
}
template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
{
ASSERT(s_mm_lock.is_locked());
ASSERT(size);
if (base_vaddr > base_vaddr.offset(size)) {
dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
return false;
}
VirtualAddress vaddr = base_vaddr.page_base();
VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
if (end_vaddr < vaddr) {
dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
return false;
}
const Region* region = nullptr;
while (vaddr <= end_vaddr) {
if (!region || !region->contains(vaddr)) {
if (space == AccessSpace::Kernel)
region = kernel_region_from_vaddr(vaddr);
if (!region || !region->contains(vaddr))
region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
if (!region
|| (space == AccessSpace::User && !region->is_user_accessible())
|| (access_type == AccessType::Read && !region->is_readable())
|| (access_type == AccessType::Write && !region->is_writable())) {
return false;
}
}
vaddr = region->range().end();
}
return true;
}
bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
{
if (!is_user_address(vaddr))
return false;
ScopedSpinLock lock(s_mm_lock);
auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
return region && region->is_user_accessible() && region->is_stack();
}
void MemoryManager::register_vmobject(VMObject& vmobject)
{
ScopedSpinLock lock(s_mm_lock);
m_vmobjects.append(&vmobject);
}
void MemoryManager::unregister_vmobject(VMObject& vmobject)
{
ScopedSpinLock lock(s_mm_lock);
m_vmobjects.remove(&vmobject);
}
void MemoryManager::register_region(Region& region)
{
ScopedSpinLock lock(s_mm_lock);
if (region.is_kernel())
m_kernel_regions.append(&region);
else
m_user_regions.append(&region);
}
void MemoryManager::unregister_region(Region& region)
{
ScopedSpinLock lock(s_mm_lock);
if (region.is_kernel())
m_kernel_regions.remove(&region);
else
m_user_regions.remove(&region);
}
void MemoryManager::dump_kernel_regions()
{
klog() << "Kernel regions:";
klog() << "BEGIN END SIZE ACCESS NAME";
ScopedSpinLock lock(s_mm_lock);
for (auto& region : MM.m_kernel_regions) {
klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
}
}
}