ladybird/Kernel/Heap/Heap.h
Timothy Flynn c911781c21 Everywhere: Remove needless trailing semi-colons after functions
This is a new option in clang-format-16.
2023-07-08 10:32:56 +01:00

172 lines
6.0 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Bitmap.h>
#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <AK/Vector.h>
#include <AK/kmalloc.h>
namespace Kernel {
enum class CallerWillInitializeMemory {
No,
Yes,
};
template<size_t CHUNK_SIZE, unsigned HEAP_SCRUB_BYTE_ALLOC = 0, unsigned HEAP_SCRUB_BYTE_FREE = 0>
class Heap {
AK_MAKE_NONCOPYABLE(Heap);
struct AllocationHeader {
size_t allocation_size_in_chunks;
#if ARCH(X86_64) || ARCH(AARCH64)
// FIXME: Get rid of this somehow
size_t alignment_dummy;
#endif
u8 data[0];
};
static_assert(CHUNK_SIZE >= sizeof(AllocationHeader));
ALWAYS_INLINE AllocationHeader* allocation_header(void* ptr)
{
return (AllocationHeader*)((((u8*)ptr) - sizeof(AllocationHeader)));
}
ALWAYS_INLINE AllocationHeader const* allocation_header(void const* ptr) const
{
return (AllocationHeader const*)((((u8 const*)ptr) - sizeof(AllocationHeader)));
}
static size_t calculate_chunks(size_t memory_size)
{
return (sizeof(u8) * memory_size) / (sizeof(u8) * CHUNK_SIZE + 1);
}
public:
static constexpr size_t AllocationHeaderSize = sizeof(AllocationHeader);
Heap(u8* memory, size_t memory_size)
: m_total_chunks(calculate_chunks(memory_size))
, m_chunks(memory)
, m_bitmap(memory + m_total_chunks * CHUNK_SIZE, m_total_chunks)
{
// To keep the alignment of the memory passed in, place the bitmap
// at the end of the memory block.
VERIFY(m_total_chunks * CHUNK_SIZE + (m_total_chunks + 7) / 8 <= memory_size);
}
~Heap() = default;
static size_t calculate_memory_for_bytes(size_t bytes)
{
size_t needed_chunks = (sizeof(AllocationHeader) + bytes + CHUNK_SIZE - 1) / CHUNK_SIZE;
return needed_chunks * CHUNK_SIZE + (needed_chunks + 7) / 8;
}
void* allocate(size_t size, size_t alignment, CallerWillInitializeMemory caller_will_initialize_memory)
{
// The minimum possible alignment is CHUNK_SIZE, since we only track chunks here, nothing smaller.
if (alignment < CHUNK_SIZE)
alignment = CHUNK_SIZE;
// We need space for the AllocationHeader at the head of the block.
size_t real_size = size + sizeof(AllocationHeader);
size_t chunks_needed = (real_size + CHUNK_SIZE - 1) / CHUNK_SIZE;
size_t chunk_alignment = (alignment + CHUNK_SIZE - 1) / CHUNK_SIZE;
if (chunks_needed > free_chunks())
return nullptr;
Optional<size_t> first_chunk;
// Choose the right policy for allocation.
// FIXME: These should utilize the alignment directly instead of trying to allocate `size + alignment`.
constexpr u32 best_fit_threshold = 128;
if (chunks_needed < best_fit_threshold) {
first_chunk = m_bitmap.find_first_fit(chunks_needed + chunk_alignment);
} else {
first_chunk = m_bitmap.find_best_fit(chunks_needed + chunk_alignment);
}
if (!first_chunk.has_value())
return nullptr;
auto* a = (AllocationHeader*)(m_chunks + (first_chunk.value() * CHUNK_SIZE));
// Align the starting address and verify that we haven't gone outside the calculated free area.
a = (AllocationHeader*)((FlatPtr)a + alignment - (FlatPtr)a->data % alignment);
auto aligned_first_chunk = ((FlatPtr)a - (FlatPtr)m_chunks) / CHUNK_SIZE;
VERIFY(first_chunk.value() <= aligned_first_chunk);
VERIFY(aligned_first_chunk + chunks_needed <= first_chunk.value() + chunks_needed + chunk_alignment);
u8* ptr = a->data;
a->allocation_size_in_chunks = chunks_needed;
m_bitmap.set_range_and_verify_that_all_bits_flip(aligned_first_chunk, chunks_needed, true);
m_allocated_chunks += chunks_needed;
if (caller_will_initialize_memory == CallerWillInitializeMemory::No) {
if constexpr (HEAP_SCRUB_BYTE_ALLOC != 0) {
__builtin_memset(ptr, HEAP_SCRUB_BYTE_ALLOC, (chunks_needed * CHUNK_SIZE) - sizeof(AllocationHeader));
}
}
VERIFY((FlatPtr)ptr % alignment == 0);
return ptr;
}
void deallocate(void* ptr)
{
if (!ptr)
return;
auto* a = allocation_header(ptr);
VERIFY((u8*)a >= m_chunks && (u8*)ptr < m_chunks + m_total_chunks * CHUNK_SIZE);
FlatPtr start = ((FlatPtr)a - (FlatPtr)m_chunks) / CHUNK_SIZE;
// First, verify that the start of the allocation at `ptr` is actually allocated.
VERIFY(m_bitmap.get(start));
VERIFY((u8*)a + a->allocation_size_in_chunks * CHUNK_SIZE <= m_chunks + m_total_chunks * CHUNK_SIZE);
m_bitmap.set_range_and_verify_that_all_bits_flip(start, a->allocation_size_in_chunks, false);
VERIFY(m_allocated_chunks >= a->allocation_size_in_chunks);
m_allocated_chunks -= a->allocation_size_in_chunks;
if constexpr (HEAP_SCRUB_BYTE_FREE != 0) {
__builtin_memset(a, HEAP_SCRUB_BYTE_FREE, a->allocation_size_in_chunks * CHUNK_SIZE);
}
}
bool contains(void const* ptr) const
{
auto const* a = allocation_header(ptr);
if ((u8 const*)a < m_chunks)
return false;
if ((u8 const*)ptr >= m_chunks + m_total_chunks * CHUNK_SIZE)
return false;
return true;
}
u8* memory() const { return m_chunks; }
size_t total_chunks() const { return m_total_chunks; }
size_t total_bytes() const { return m_total_chunks * CHUNK_SIZE; }
size_t free_chunks() const { return m_total_chunks - m_allocated_chunks; }
size_t free_bytes() const { return free_chunks() * CHUNK_SIZE; }
size_t allocated_chunks() const { return m_allocated_chunks; }
size_t allocated_bytes() const { return m_allocated_chunks * CHUNK_SIZE; }
private:
size_t m_total_chunks { 0 };
size_t m_allocated_chunks { 0 };
u8* m_chunks { nullptr };
Bitmap m_bitmap;
};
}