mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-12-27 05:05:32 +03:00
d84b69ace9
This is useful if you want an array with an explicit type but still want its size to be inferred.
186 lines
5.1 KiB
C++
186 lines
5.1 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Iterator.h>
|
|
#include <AK/Optional.h>
|
|
#include <AK/Span.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/TypedTransfer.h>
|
|
|
|
namespace AK {
|
|
|
|
namespace Detail {
|
|
// This type serves as the storage of 0-sized `AK::Array`s. While zero-length `T[0]`
|
|
// is accepted as a GNU extension, it causes problems with UBSan in Clang 16.
|
|
template<typename T>
|
|
struct EmptyArrayStorage {
|
|
T& operator[](size_t) const { VERIFY_NOT_REACHED(); }
|
|
constexpr operator T*() const { return nullptr; }
|
|
};
|
|
}
|
|
|
|
template<typename T, size_t Size>
|
|
struct Array {
|
|
using ValueType = T;
|
|
|
|
// This is a static function because constructors mess up Array's POD-ness.
|
|
static Array from_span(ReadonlySpan<T> span)
|
|
{
|
|
Array array;
|
|
VERIFY(span.size() == Size);
|
|
TypedTransfer<T>::copy(array.data(), span.data(), Size);
|
|
return array;
|
|
}
|
|
|
|
static constexpr Array from_repeated_value(T const& value)
|
|
{
|
|
Array array;
|
|
array.fill(value);
|
|
return array;
|
|
}
|
|
|
|
[[nodiscard]] constexpr T const* data() const { return __data; }
|
|
[[nodiscard]] constexpr T* data() { return __data; }
|
|
|
|
[[nodiscard]] constexpr size_t size() const { return Size; }
|
|
|
|
[[nodiscard]] constexpr ReadonlySpan<T> span() const { return { __data, Size }; }
|
|
[[nodiscard]] constexpr Span<T> span() { return { __data, Size }; }
|
|
|
|
[[nodiscard]] constexpr T const& at(size_t index) const
|
|
{
|
|
VERIFY(index < size());
|
|
return __data[index];
|
|
}
|
|
[[nodiscard]] constexpr T& at(size_t index)
|
|
{
|
|
VERIFY(index < size());
|
|
return __data[index];
|
|
}
|
|
|
|
[[nodiscard]] constexpr T const& first() const { return at(0); }
|
|
[[nodiscard]] constexpr T& first() { return at(0); }
|
|
|
|
[[nodiscard]] constexpr T const& last() const
|
|
requires(Size > 0)
|
|
{
|
|
return at(Size - 1);
|
|
}
|
|
[[nodiscard]] constexpr T& last()
|
|
requires(Size > 0)
|
|
{
|
|
return at(Size - 1);
|
|
}
|
|
|
|
[[nodiscard]] constexpr bool is_empty() const { return size() == 0; }
|
|
|
|
[[nodiscard]] constexpr T const& operator[](size_t index) const { return at(index); }
|
|
[[nodiscard]] constexpr T& operator[](size_t index) { return at(index); }
|
|
|
|
template<typename T2, size_t Size2>
|
|
[[nodiscard]] constexpr bool operator==(Array<T2, Size2> const& other) const { return span() == other.span(); }
|
|
|
|
using ConstIterator = SimpleIterator<Array const, T const>;
|
|
using Iterator = SimpleIterator<Array, T>;
|
|
|
|
[[nodiscard]] constexpr ConstIterator begin() const { return ConstIterator::begin(*this); }
|
|
[[nodiscard]] constexpr Iterator begin() { return Iterator::begin(*this); }
|
|
|
|
[[nodiscard]] constexpr ConstIterator end() const { return ConstIterator::end(*this); }
|
|
[[nodiscard]] constexpr Iterator end() { return Iterator::end(*this); }
|
|
|
|
[[nodiscard]] constexpr operator ReadonlySpan<T>() const { return span(); }
|
|
[[nodiscard]] constexpr operator Span<T>() { return span(); }
|
|
|
|
constexpr size_t fill(T const& value)
|
|
{
|
|
for (size_t idx = 0; idx < Size; ++idx)
|
|
__data[idx] = value;
|
|
|
|
return Size;
|
|
}
|
|
|
|
[[nodiscard]] constexpr T max() const
|
|
requires(requires(T x, T y) { x < y; })
|
|
{
|
|
static_assert(Size > 0, "No values to max() over");
|
|
|
|
T value = __data[0];
|
|
for (size_t i = 1; i < Size; ++i)
|
|
value = AK::max(__data[i], value);
|
|
return value;
|
|
}
|
|
|
|
[[nodiscard]] constexpr T min() const
|
|
requires(requires(T x, T y) { x > y; })
|
|
{
|
|
static_assert(Size > 0, "No values to min() over");
|
|
|
|
T value = __data[0];
|
|
for (size_t i = 1; i < Size; ++i)
|
|
value = AK::min(__data[i], value);
|
|
return value;
|
|
}
|
|
|
|
bool contains_slow(T const& value) const
|
|
{
|
|
return first_index_of(value).has_value();
|
|
}
|
|
|
|
Optional<size_t> first_index_of(T const& value) const
|
|
{
|
|
for (size_t i = 0; i < Size; ++i) {
|
|
if (__data[i] == value)
|
|
return i;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
Conditional<Size == 0, Detail::EmptyArrayStorage<T>, T[Size]> __data;
|
|
};
|
|
|
|
template<typename T, typename... Types>
|
|
Array(T, Types...) -> Array<T, sizeof...(Types) + 1>;
|
|
|
|
namespace Detail {
|
|
template<typename T, size_t... Is>
|
|
constexpr auto integer_sequence_generate_array([[maybe_unused]] T const offset, IntegerSequence<T, Is...>) -> Array<T, sizeof...(Is)>
|
|
{
|
|
return { { (offset + Is)... } };
|
|
}
|
|
}
|
|
|
|
template<typename T, T N>
|
|
constexpr auto iota_array(T const offset = {})
|
|
{
|
|
static_assert(N >= T {}, "Negative sizes not allowed in iota_array()");
|
|
return Detail::integer_sequence_generate_array<T>(offset, MakeIntegerSequence<T, N>());
|
|
}
|
|
|
|
namespace Detail {
|
|
template<typename T, size_t N, size_t... Is>
|
|
constexpr auto to_array_impl(T (&&a)[N], IndexSequence<Is...>) -> Array<T, sizeof...(Is)>
|
|
{
|
|
return { { a[Is]... } };
|
|
}
|
|
}
|
|
|
|
template<typename T, size_t N>
|
|
constexpr auto to_array(T (&&a)[N])
|
|
{
|
|
return Detail::to_array_impl(move(a), MakeIndexSequence<N>());
|
|
}
|
|
|
|
}
|
|
|
|
#if USING_AK_GLOBALLY
|
|
using AK::Array;
|
|
using AK::iota_array;
|
|
using AK::to_array;
|
|
#endif
|