ladybird/Kernel/Scheduler.cpp
2021-05-19 22:51:42 +02:00

620 lines
21 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/QuickSort.h>
#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <Kernel/Debug.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>
// Remove this once SMP is stable and can be enabled by default
#define SCHEDULE_ON_ALL_PROCESSORS 0
namespace Kernel {
class SchedulerPerProcessorData {
AK_MAKE_NONCOPYABLE(SchedulerPerProcessorData);
AK_MAKE_NONMOVABLE(SchedulerPerProcessorData);
public:
SchedulerPerProcessorData() = default;
WeakPtr<Thread> m_pending_beneficiary;
const char* m_pending_donate_reason { nullptr };
bool m_in_scheduler { true };
};
RecursiveSpinLock g_scheduler_lock;
static u32 time_slice_for(const Thread& thread)
{
// One time slice unit == 4ms (assuming 250 ticks/second)
if (thread.is_idle_thread())
return 1;
return 2;
}
READONLY_AFTER_INIT Thread* g_finalizer;
READONLY_AFTER_INIT WaitQueue* g_finalizer_wait_queue;
Atomic<bool> g_finalizer_has_work { false };
READONLY_AFTER_INIT static Process* s_colonel_process;
struct ThreadReadyQueue {
IntrusiveList<Thread, RawPtr<Thread>, &Thread::m_ready_queue_node> thread_list;
};
static SpinLock<u8> g_ready_queues_lock;
static u32 g_ready_queues_mask;
static constexpr u32 g_ready_queue_buckets = sizeof(g_ready_queues_mask) * 8;
READONLY_AFTER_INIT static ThreadReadyQueue* g_ready_queues; // g_ready_queue_buckets entries
static void dump_thread_list();
static inline u32 thread_priority_to_priority_index(u32 thread_priority)
{
// Converts the priority in the range of THREAD_PRIORITY_MIN...THREAD_PRIORITY_MAX
// to a index into g_ready_queues where 0 is the highest priority bucket
VERIFY(thread_priority >= THREAD_PRIORITY_MIN && thread_priority <= THREAD_PRIORITY_MAX);
constexpr u32 thread_priority_count = THREAD_PRIORITY_MAX - THREAD_PRIORITY_MIN + 1;
static_assert(thread_priority_count > 0);
auto priority_bucket = ((thread_priority_count - (thread_priority - THREAD_PRIORITY_MIN)) / thread_priority_count) * (g_ready_queue_buckets - 1);
VERIFY(priority_bucket < g_ready_queue_buckets);
return priority_bucket;
}
Thread& Scheduler::pull_next_runnable_thread()
{
auto affinity_mask = 1u << Processor::current().id();
ScopedSpinLock lock(g_ready_queues_lock);
auto priority_mask = g_ready_queues_mask;
while (priority_mask != 0) {
auto priority = __builtin_ffsl(priority_mask);
VERIFY(priority > 0);
auto& ready_queue = g_ready_queues[--priority];
for (auto& thread : ready_queue.thread_list) {
VERIFY(thread.m_runnable_priority == (int)priority);
if (thread.is_active())
continue;
if (!(thread.affinity() & affinity_mask))
continue;
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
g_ready_queues_mask &= ~(1u << priority);
// Mark it as active because we are using this thread. This is similar
// to comparing it with Processor::current_thread, but when there are
// multiple processors there's no easy way to check whether the thread
// is actually still needed. This prevents accidental finalization when
// a thread is no longer in Running state, but running on another core.
// We need to mark it active here so that this thread won't be
// scheduled on another core if it were to be queued before actually
// switching to it.
// FIXME: Figure out a better way maybe?
thread.set_active(true);
return thread;
}
priority_mask &= ~(1u << priority);
}
return *Processor::idle_thread();
}
bool Scheduler::dequeue_runnable_thread(Thread& thread, bool check_affinity)
{
if (thread.is_idle_thread())
return true;
ScopedSpinLock lock(g_ready_queues_lock);
auto priority = thread.m_runnable_priority;
if (priority < 0) {
VERIFY(!thread.m_ready_queue_node.is_in_list());
return false;
}
if (check_affinity && !(thread.affinity() & (1 << Processor::current().id())))
return false;
VERIFY(g_ready_queues_mask & (1u << priority));
auto& ready_queue = g_ready_queues[priority];
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
g_ready_queues_mask &= ~(1u << priority);
return true;
}
void Scheduler::queue_runnable_thread(Thread& thread)
{
VERIFY(g_scheduler_lock.own_lock());
if (thread.is_idle_thread())
return;
auto priority = thread_priority_to_priority_index(thread.priority());
ScopedSpinLock lock(g_ready_queues_lock);
VERIFY(thread.m_runnable_priority < 0);
thread.m_runnable_priority = (int)priority;
VERIFY(!thread.m_ready_queue_node.is_in_list());
auto& ready_queue = g_ready_queues[priority];
bool was_empty = ready_queue.thread_list.is_empty();
ready_queue.thread_list.append(thread);
if (was_empty)
g_ready_queues_mask |= (1u << priority);
}
UNMAP_AFTER_INIT void Scheduler::start()
{
VERIFY_INTERRUPTS_DISABLED();
// We need to acquire our scheduler lock, which will be released
// by the idle thread once control transferred there
g_scheduler_lock.lock();
auto& processor = Processor::current();
processor.set_scheduler_data(*new SchedulerPerProcessorData());
VERIFY(processor.is_initialized());
auto& idle_thread = *Processor::idle_thread();
VERIFY(processor.current_thread() == &idle_thread);
idle_thread.set_ticks_left(time_slice_for(idle_thread));
idle_thread.did_schedule();
idle_thread.set_initialized(true);
processor.init_context(idle_thread, false);
idle_thread.set_state(Thread::Running);
VERIFY(idle_thread.affinity() == (1u << processor.get_id()));
processor.initialize_context_switching(idle_thread);
VERIFY_NOT_REACHED();
}
bool Scheduler::pick_next()
{
VERIFY_INTERRUPTS_DISABLED();
auto current_thread = Thread::current();
// Set the m_in_scheduler flag before acquiring the spinlock. This
// prevents a recursive call into Scheduler::invoke_async upon
// leaving the scheduler lock.
ScopedCritical critical;
auto& scheduler_data = Processor::current().get_scheduler_data();
scheduler_data.m_in_scheduler = true;
ScopeGuard guard(
[]() {
// We may be on a different processor after we got switched
// back to this thread!
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
});
ScopedSpinLock lock(g_scheduler_lock);
if (current_thread->should_die() && current_thread->state() == Thread::Running) {
// Rather than immediately killing threads, yanking the kernel stack
// away from them (which can lead to e.g. reference leaks), we always
// allow Thread::wait_on to return. This allows the kernel stack to
// clean up and eventually we'll get here shortly before transitioning
// back to user mode (from Processor::exit_trap). At this point we
// no longer want to schedule this thread. We can't wait until
// Scheduler::enter_current because we don't want to allow it to
// transition back to user mode.
if constexpr (SCHEDULER_DEBUG)
dbgln("Scheduler[{}]: Thread {} is dying", Processor::id(), *current_thread);
current_thread->set_state(Thread::Dying);
}
if constexpr (SCHEDULER_RUNNABLE_DEBUG) {
dump_thread_list();
}
auto pending_beneficiary = scheduler_data.m_pending_beneficiary.strong_ref();
if (pending_beneficiary && dequeue_runnable_thread(*pending_beneficiary, true)) {
// The thread we're supposed to donate to still exists and we can
const char* reason = scheduler_data.m_pending_donate_reason;
scheduler_data.m_pending_beneficiary = nullptr;
scheduler_data.m_pending_donate_reason = nullptr;
// We need to leave our first critical section before switching context,
// but since we're still holding the scheduler lock we're still in a critical section
critical.leave();
dbgln_if(SCHEDULER_DEBUG, "Processing pending donate to {} reason={}", *pending_beneficiary, reason);
return donate_to_and_switch(pending_beneficiary.ptr(), reason);
}
// Either we're not donating or the beneficiary disappeared.
// Either way clear any pending information
scheduler_data.m_pending_beneficiary = nullptr;
scheduler_data.m_pending_donate_reason = nullptr;
auto& thread_to_schedule = pull_next_runnable_thread();
if constexpr (SCHEDULER_DEBUG) {
dbgln("Scheduler[{}]: Switch to {} @ {:04x}:{:08x}",
Processor::id(),
thread_to_schedule,
thread_to_schedule.tss().cs, thread_to_schedule.tss().eip);
}
// We need to leave our first critical section before switching context,
// but since we're still holding the scheduler lock we're still in a critical section
critical.leave();
thread_to_schedule.set_ticks_left(time_slice_for(thread_to_schedule));
return context_switch(&thread_to_schedule);
}
bool Scheduler::yield()
{
InterruptDisabler disabler;
auto& proc = Processor::current();
auto& scheduler_data = proc.get_scheduler_data();
// Clear any pending beneficiary
scheduler_data.m_pending_beneficiary = nullptr;
scheduler_data.m_pending_donate_reason = nullptr;
auto current_thread = Thread::current();
dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: yielding thread {} in_irq={}", proc.get_id(), *current_thread, proc.in_irq());
VERIFY(current_thread != nullptr);
if (proc.in_irq() || proc.in_critical()) {
// If we're handling an IRQ we can't switch context, or we're in
// a critical section where we don't want to switch contexts, then
// delay until exiting the trap or critical section
proc.invoke_scheduler_async();
return false;
}
if (!Scheduler::pick_next())
return false;
if constexpr (SCHEDULER_DEBUG)
dbgln("Scheduler[{}]: yield returns to thread {} in_irq={}", Processor::id(), *current_thread, Processor::current().in_irq());
return true;
}
bool Scheduler::donate_to_and_switch(Thread* beneficiary, [[maybe_unused]] const char* reason)
{
VERIFY(g_scheduler_lock.own_lock());
auto& proc = Processor::current();
VERIFY(proc.in_critical() == 1);
unsigned ticks_left = Thread::current()->ticks_left();
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
return Scheduler::yield();
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: Donating {} ticks to {}, reason={}", proc.get_id(), ticks_to_donate, *beneficiary, reason);
beneficiary->set_ticks_left(ticks_to_donate);
return Scheduler::context_switch(beneficiary);
}
bool Scheduler::donate_to(RefPtr<Thread>& beneficiary, const char* reason)
{
VERIFY(beneficiary);
if (beneficiary == Thread::current())
return Scheduler::yield();
// Set the m_in_scheduler flag before acquiring the spinlock. This
// prevents a recursive call into Scheduler::invoke_async upon
// leaving the scheduler lock.
ScopedCritical critical;
auto& proc = Processor::current();
auto& scheduler_data = proc.get_scheduler_data();
scheduler_data.m_in_scheduler = true;
ScopeGuard guard(
[]() {
// We may be on a different processor after we got switched
// back to this thread!
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
});
VERIFY(!proc.in_irq());
if (proc.in_critical() > 1) {
scheduler_data.m_pending_beneficiary = beneficiary; // Save the beneficiary
scheduler_data.m_pending_donate_reason = reason;
proc.invoke_scheduler_async();
return false;
}
ScopedSpinLock lock(g_scheduler_lock);
// "Leave" the critical section before switching context. Since we
// still hold the scheduler lock, we're not actually leaving it.
// Processor::switch_context expects Processor::in_critical() to be 1
critical.leave();
donate_to_and_switch(beneficiary, reason);
return false;
}
bool Scheduler::context_switch(Thread* thread)
{
thread->did_schedule();
auto from_thread = Thread::current();
if (from_thread == thread)
return false;
if (from_thread) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (from_thread->state() == Thread::Running)
from_thread->set_state(Thread::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbgln("Scheduler[{}]: {} -> {} [prio={}] {:04x}:{:08x}", Processor::id(), from_thread->tid().value(), thread->tid().value(), thread->priority(), thread->tss().cs, thread->tss().eip);
#endif
}
auto& proc = Processor::current();
if (!thread->is_initialized()) {
proc.init_context(*thread, false);
thread->set_initialized(true);
}
thread->set_state(Thread::Running);
PerformanceManager::add_context_switch_perf_event(*from_thread, *thread);
proc.switch_context(from_thread, thread);
// NOTE: from_thread at this point reflects the thread we were
// switched from, and thread reflects Thread::current()
enter_current(*from_thread, false);
VERIFY(thread == Thread::current());
#if ARCH(I386)
if (thread->process().is_user_process()) {
auto iopl = get_iopl_from_eflags(Thread::current()->get_register_dump_from_stack().eflags);
if (iopl != 0) {
PANIC("Switched to thread {} with non-zero IOPL={}", Thread::current()->tid().value(), iopl);
}
}
#endif
return true;
}
void Scheduler::enter_current(Thread& prev_thread, bool is_first)
{
VERIFY(g_scheduler_lock.own_lock());
prev_thread.set_active(false);
if (prev_thread.state() == Thread::Dying) {
// If the thread we switched from is marked as dying, then notify
// the finalizer. Note that as soon as we leave the scheduler lock
// the finalizer may free from_thread!
notify_finalizer();
} else if (!is_first) {
// Check if we have any signals we should deliver (even if we don't
// end up switching to another thread).
auto current_thread = Thread::current();
if (!current_thread->is_in_block() && current_thread->previous_mode() != Thread::PreviousMode::KernelMode) {
ScopedSpinLock lock(current_thread->get_lock());
if (current_thread->state() == Thread::Running && current_thread->pending_signals_for_state()) {
current_thread->dispatch_one_pending_signal();
}
}
}
}
void Scheduler::leave_on_first_switch(u32 flags)
{
// This is called when a thread is switched into for the first time.
// At this point, enter_current has already be called, but because
// Scheduler::context_switch is not in the call stack we need to
// clean up and release locks manually here
g_scheduler_lock.unlock(flags);
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
}
void Scheduler::prepare_after_exec()
{
// This is called after exec() when doing a context "switch" into
// the new process. This is called from Processor::assume_context
VERIFY(g_scheduler_lock.own_lock());
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(!scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = true;
}
void Scheduler::prepare_for_idle_loop()
{
// This is called when the CPU finished setting up the idle loop
// and is about to run it. We need to acquire he scheduler lock
VERIFY(!g_scheduler_lock.own_lock());
g_scheduler_lock.lock();
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(!scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = true;
}
bool Scheduler::colonel_initialized()
{
return !!s_colonel_process;
}
Process* Scheduler::colonel()
{
VERIFY(s_colonel_process);
return s_colonel_process;
}
UNMAP_AFTER_INIT void Scheduler::initialize()
{
VERIFY(&Processor::current() != nullptr); // sanity check
RefPtr<Thread> idle_thread;
g_finalizer_wait_queue = new WaitQueue;
g_ready_queues = new ThreadReadyQueue[g_ready_queue_buckets];
g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop, nullptr, 1).leak_ref();
VERIFY(s_colonel_process);
VERIFY(idle_thread);
idle_thread->set_priority(THREAD_PRIORITY_MIN);
idle_thread->set_name(StringView("idle thread #0"));
set_idle_thread(idle_thread);
}
UNMAP_AFTER_INIT void Scheduler::set_idle_thread(Thread* idle_thread)
{
idle_thread->set_idle_thread();
Processor::current().set_idle_thread(*idle_thread);
Processor::current().set_current_thread(*idle_thread);
}
UNMAP_AFTER_INIT Thread* Scheduler::create_ap_idle_thread(u32 cpu)
{
VERIFY(cpu != 0);
// This function is called on the bsp, but creates an idle thread for another AP
VERIFY(Processor::is_bootstrap_processor());
VERIFY(s_colonel_process);
Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, String::formatted("idle thread #{}", cpu), 1 << cpu, false);
VERIFY(idle_thread);
return idle_thread;
}
void Scheduler::timer_tick(const RegisterState& regs)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(Processor::current().in_irq());
auto current_thread = Processor::current_thread();
if (!current_thread)
return;
// Sanity checks
VERIFY(current_thread->current_trap());
VERIFY(current_thread->current_trap()->regs == &regs);
#if !SCHEDULE_ON_ALL_PROCESSORS
if (!Processor::is_bootstrap_processor())
return; // TODO: This prevents scheduling on other CPUs!
#endif
if (current_thread->tick())
return;
VERIFY_INTERRUPTS_DISABLED();
VERIFY(Processor::current().in_irq());
Processor::current().invoke_scheduler_async();
}
void Scheduler::invoke_async()
{
VERIFY_INTERRUPTS_DISABLED();
auto& proc = Processor::current();
VERIFY(!proc.in_irq());
// Since this function is called when leaving critical sections (such
// as a SpinLock), we need to check if we're not already doing this
// to prevent recursion
if (!proc.get_scheduler_data().m_in_scheduler)
pick_next();
}
void Scheduler::yield_from_critical()
{
auto& proc = Processor::current();
VERIFY(proc.in_critical());
VERIFY(!proc.in_irq());
yield(); // Flag a context switch
u32 prev_flags;
u32 prev_crit = Processor::current().clear_critical(prev_flags, false);
// Note, we may now be on a different CPU!
Processor::current().restore_critical(prev_crit, prev_flags);
}
void Scheduler::notify_finalizer()
{
if (g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel) == false)
g_finalizer_wait_queue->wake_all();
}
void Scheduler::idle_loop(void*)
{
auto& proc = Processor::current();
dbgln("Scheduler[{}]: idle loop running", proc.get_id());
VERIFY(are_interrupts_enabled());
for (;;) {
proc.idle_begin();
asm("hlt");
proc.idle_end();
VERIFY_INTERRUPTS_ENABLED();
#if SCHEDULE_ON_ALL_PROCESSORS
yield();
#else
if (Processor::current().id() == 0)
yield();
#endif
}
}
void Scheduler::dump_scheduler_state()
{
dump_thread_list();
}
void dump_thread_list()
{
dbgln("Scheduler thread list for processor {}:", Processor::id());
auto get_cs = [](Thread& thread) -> u16 {
if (!thread.current_trap())
return thread.tss().cs;
return thread.get_register_dump_from_stack().cs;
};
auto get_eip = [](Thread& thread) -> u32 {
if (!thread.current_trap())
return thread.tss().eip;
return thread.get_register_dump_from_stack().eip;
};
Thread::for_each([&](Thread& thread) {
switch (thread.state()) {
case Thread::Dying:
dmesgln(" {:14} {:30} @ {:04x}:{:08x} Finalizable: {}, (nsched: {})",
thread.state_string(),
thread,
get_cs(thread),
get_eip(thread),
thread.is_finalizable(),
thread.times_scheduled());
break;
default:
dmesgln(" {:14} Pr:{:2} {:30} @ {:04x}:{:08x} (nsched: {})",
thread.state_string(),
thread.priority(),
thread,
get_cs(thread),
get_eip(thread),
thread.times_scheduled());
break;
}
});
}
}