ladybird/Libraries/LibM/math.cpp
Matthew Olsson 49c5acaa3d LibM: Fix Lagom build
isnormal really messes up the build. Just remove it for now; it can be
addressed in a seperate commit. Additionally, conditionally add
`noexcept` to the math functions if we are in a C++ context.
2020-07-26 14:53:43 +02:00

541 lines
12 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <LibC/assert.h>
#include <LibM/math.h>
#include <stdint.h>
#include <stdlib.h>
template<size_t>
constexpr double e_to_power();
template<>
constexpr double e_to_power<0>() { return 1; }
template<size_t exponent>
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
template<size_t>
constexpr size_t factorial();
template<>
constexpr size_t factorial<0>() { return 1; }
template<size_t value>
constexpr size_t factorial() { return value * factorial<value - 1>(); }
template<size_t>
constexpr size_t product_even();
template<>
constexpr size_t product_even<2>() { return 2; }
template<size_t value>
constexpr size_t product_even() { return value * product_even<value - 2>(); }
template<size_t>
constexpr size_t product_odd();
template<>
constexpr size_t product_odd<1>() { return 1; }
template<size_t value>
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
extern "C" {
double trunc(double x) NOEXCEPT
{
return (int64_t)x;
}
double cos(double angle) NOEXCEPT
{
return sin(angle + M_PI_2);
}
float cosf(float angle) NOEXCEPT
{
return sinf(angle + M_PI_2);
}
// This can also be done with a taylor expansion, but for
// now this works pretty well (and doesn't mess anything up
// in quake in particular, which is very Floating-Point precision
// heavy)
double sin(double angle) NOEXCEPT
{
double ret = 0.0;
__asm__(
"fsin"
: "=t"(ret)
: "0"(angle));
return ret;
}
float sinf(float angle) NOEXCEPT
{
float ret = 0.0f;
__asm__(
"fsin"
: "=t"(ret)
: "0"(angle));
return ret;
}
double pow(double x, double y) NOEXCEPT
{
// FIXME: Please fix me. I am naive.
if (y == 0)
return 1;
if (y == 1)
return x;
int y_as_int = (int)y;
if (y == (double)y_as_int) {
double result = x;
for (int i = 0; i < fabs(y) - 1; ++i)
result *= x;
if (y < 0)
result = 1.0 / result;
return result;
}
return exp(y * log(x));
}
float powf(float x, float y) NOEXCEPT
{
// FIXME: Please fix me. I am naive.
if (y == 0)
return 1;
if (y == 1)
return x;
int y_as_int = (int)y;
if (y == (float)y_as_int) {
float result = x;
for (int i = 0; i < fabs(y) - 1; ++i)
result *= x;
if (y < 0)
result = 1.0 / result;
return result;
}
return (float)exp((double)y * log((double)x));
}
double ldexp(double x, int exp) NOEXCEPT
{
// FIXME: Please fix me. I am naive.
double val = pow(2, exp);
return x * val;
}
double tanh(double x) NOEXCEPT
{
if (x > 0) {
double exponentiated = exp(2 * x);
return (exponentiated - 1) / (exponentiated + 1);
}
double plusX = exp(x);
double minusX = 1 / plusX;
return (plusX - minusX) / (plusX + minusX);
}
double ampsin(double angle) NOEXCEPT
{
double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
double looped_angle_squared = looped_angle * looped_angle;
double quadratic_term;
if (looped_angle > 0) {
quadratic_term = -looped_angle_squared;
} else {
quadratic_term = looped_angle_squared;
}
double linear_term = M_PI * looped_angle;
return quadratic_term + linear_term;
}
double tan(double angle) NOEXCEPT
{
return ampsin(angle) / ampsin(M_PI_2 + angle);
}
double sqrt(double x) NOEXCEPT
{
double res;
__asm__("fsqrt"
: "=t"(res)
: "0"(x));
return res;
}
float sqrtf(float x) NOEXCEPT
{
float res;
__asm__("fsqrt"
: "=t"(res)
: "0"(x));
return res;
}
double sinh(double x) NOEXCEPT
{
double exponentiated = exp(x);
if (x > 0)
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
return (exponentiated - 1 / exponentiated) / 2;
}
double log10(double x) NOEXCEPT
{
return log(x) / M_LN10;
}
double log(double x) NOEXCEPT
{
if (x < 0)
return NAN;
if (x == 0)
return -INFINITY;
double y = 1 + 2 * (x - 1) / (x + 1);
double exponentiated = exp(y);
y = y + 2 * (x - exponentiated) / (x + exponentiated);
exponentiated = exp(y);
y = y + 2 * (x - exponentiated) / (x + exponentiated);
exponentiated = exp(y);
return y + 2 * (x - exponentiated) / (x + exponentiated);
}
float logf(float x) NOEXCEPT
{
return (float)log(x);
}
double fmod(double index, double period) NOEXCEPT
{
return index - trunc(index / period) * period;
}
float fmodf(float index, float period) NOEXCEPT
{
return index - trunc(index / period) * period;
}
double exp(double exponent) NOEXCEPT
{
double result = 1;
if (exponent >= 1) {
size_t integer_part = (size_t)exponent;
if (integer_part & 1)
result *= e_to_power<1>();
if (integer_part & 2)
result *= e_to_power<2>();
if (integer_part > 3) {
if (integer_part & 4)
result *= e_to_power<4>();
if (integer_part & 8)
result *= e_to_power<8>();
if (integer_part & 16)
result *= e_to_power<16>();
if (integer_part & 32)
result *= e_to_power<32>();
if (integer_part >= 64)
return INFINITY;
}
exponent -= integer_part;
} else if (exponent < 0)
return 1 / exp(-exponent);
double taylor_series_result = 1 + exponent;
double taylor_series_numerator = exponent * exponent;
taylor_series_result += taylor_series_numerator / factorial<2>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<3>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<4>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<5>();
return result * taylor_series_result;
}
float expf(float exponent) NOEXCEPT
{
return (float)exp(exponent);
}
double exp2(double exponent) NOEXCEPT
{
return pow(2.0, exponent);
}
float exp2f(float exponent) NOEXCEPT
{
return pow(2.0f, exponent);
}
double cosh(double x) NOEXCEPT
{
double exponentiated = exp(-x);
if (x < 0)
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
return (1 / exponentiated + exponentiated) / 2;
}
double atan2(double y, double x) NOEXCEPT
{
if (x > 0)
return atan(y / x);
if (x == 0) {
if (y > 0)
return M_PI_2;
if (y < 0)
return -M_PI_2;
return 0;
}
if (y >= 0)
return atan(y / x) + M_PI;
return atan(y / x) - M_PI;
}
float atan2f(float y, float x) NOEXCEPT
{
return (float)atan2(y, x);
}
double atan(double x) NOEXCEPT
{
if (x < 0)
return -atan(-x);
if (x > 1)
return M_PI_2 - atan(1 / x);
double squared = x * x;
return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
}
double asin(double x) NOEXCEPT
{
if (x > 1 || x < -1)
return NAN;
if (x > 0.5 || x < -0.5)
return 2 * atan(x / (1 + sqrt(1 - x * x)));
double squared = x * x;
double value = x;
double i = x * squared;
value += i * product_odd<1>() / product_even<2>() / 3;
i *= squared;
value += i * product_odd<3>() / product_even<4>() / 5;
i *= squared;
value += i * product_odd<5>() / product_even<6>() / 7;
i *= squared;
value += i * product_odd<7>() / product_even<8>() / 9;
i *= squared;
value += i * product_odd<9>() / product_even<10>() / 11;
i *= squared;
value += i * product_odd<11>() / product_even<12>() / 13;
return value;
}
float asinf(float x) NOEXCEPT
{
return (float)asin(x);
}
double acos(double x) NOEXCEPT
{
return M_PI_2 - asin(x);
}
float acosf(float x) NOEXCEPT
{
return M_PI_2 - asinf(x);
}
double fabs(double value) NOEXCEPT
{
return value < 0 ? -value : value;
}
double log2(double x) NOEXCEPT
{
return log(x) / M_LN2;
}
float log2f(float x) NOEXCEPT
{
return log2(x);
}
long double log2l(long double x) NOEXCEPT
{
return log2(x);
}
double frexp(double, int*) NOEXCEPT
{
ASSERT_NOT_REACHED();
return 0;
}
float frexpf(float, int*) NOEXCEPT
{
ASSERT_NOT_REACHED();
return 0;
}
long double frexpl(long double, int*) NOEXCEPT
{
ASSERT_NOT_REACHED();
return 0;
}
double round(double value) NOEXCEPT
{
// FIXME: Please fix me. I am naive.
if (value >= 0.0)
return (double)(int)(value + 0.5);
return (double)(int)(value - 0.5);
}
float roundf(float value) NOEXCEPT
{
// FIXME: Please fix me. I am naive.
if (value >= 0.0f)
return (float)(int)(value + 0.5f);
return (float)(int)(value - 0.5f);
}
float floorf(float value) NOEXCEPT
{
if (value >= 0)
return (int)value;
int intvalue = (int)value;
return ((float)intvalue == value) ? intvalue : intvalue - 1;
}
double floor(double value) NOEXCEPT
{
if (value >= 0)
return (int)value;
int intvalue = (int)value;
return ((double)intvalue == value) ? intvalue : intvalue - 1;
}
double rint(double value) NOEXCEPT
{
return (int)roundf(value);
}
float ceilf(float value) NOEXCEPT
{
// FIXME: Please fix me. I am naive.
int as_int = (int)value;
if (value == (float)as_int)
return as_int;
if (value < 0) {
if (as_int == 0)
return -0;
return as_int;
}
return as_int + 1;
}
double ceil(double value) NOEXCEPT
{
// FIXME: Please fix me. I am naive.
int as_int = (int)value;
if (value == (double)as_int)
return as_int;
if (value < 0) {
if (as_int == 0)
return -0;
return as_int;
}
return as_int + 1;
}
double modf(double x, double* intpart) NOEXCEPT
{
*intpart = (double)((int)(x));
return x - (int)x;
}
double gamma(double x) NOEXCEPT
{
// Stirling approximation
return sqrt(2.0 * M_PI / x) * pow(x / M_E, x);
}
double expm1(double x) NOEXCEPT
{
return pow(M_E, x) - 1;
}
double cbrt(double x) NOEXCEPT
{
if (x > 0) {
return pow(x, 1.0 / 3.0);
}
return -pow(-x, 1.0 / 3.0);
}
double log1p(double x) NOEXCEPT
{
return log(1 + x);
}
double acosh(double x) NOEXCEPT
{
return log(x + sqrt(x * x - 1));
}
double asinh(double x) NOEXCEPT
{
return log(x + sqrt(x * x + 1));
}
double atanh(double x) NOEXCEPT
{
return log((1 + x) / (1 - x)) / 2.0;
}
double hypot(double x, double y) NOEXCEPT
{
return sqrt(x * x + y * y);
}
double erf(double x) NOEXCEPT
{
// algorithm taken from Abramowitz and Stegun (no. 26.2.17)
double t = 1 / (1 + 0.47047 * fabs(x));
double poly = t * (0.3480242 + t * (-0.958798 + t * 0.7478556));
double answer = 1 - poly * exp(-x * x);
if (x < 0)
return -answer;
return answer;
}
double erfc(double x) NOEXCEPT
{
return 1 - erf(x);
}
}