ladybird/Kernel/PCI/MMIOAccess.cpp
Brian Gianforcaro 1682f0b760 Everything: Move to SPDX license identifiers in all files.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.

See: https://spdx.dev/resources/use/#identifiers

This was done with the `ambr` search and replace tool.

 ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
2021-04-22 11:22:27 +02:00

211 lines
7.9 KiB
C++

/*
* Copyright (c) 2021, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Optional.h>
#include <AK/StringView.h>
#include <Kernel/Arch/x86/CPU.h>
#include <Kernel/Debug.h>
#include <Kernel/PCI/MMIOAccess.h>
#include <Kernel/VM/MemoryManager.h>
namespace Kernel {
namespace PCI {
#define MEMORY_RANGE_PER_BUS (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS)
u32 MMIOAccess::segment_count() const
{
return m_segments.size();
}
u8 MMIOAccess::segment_start_bus(u32 seg) const
{
auto segment = m_segments.get(seg);
VERIFY(segment.has_value());
return segment.value().get_start_bus();
}
u8 MMIOAccess::segment_end_bus(u32 seg) const
{
auto segment = m_segments.get(seg);
VERIFY(segment.has_value());
return segment.value().get_end_bus();
}
PhysicalAddress MMIOAccess::determine_memory_mapped_bus_region(u32 segment, u8 bus) const
{
VERIFY(bus >= segment_start_bus(segment) && bus <= segment_end_bus(segment));
auto seg = m_segments.get(segment);
VERIFY(seg.has_value());
return seg.value().get_paddr().offset(MEMORY_RANGE_PER_BUS * (bus - seg.value().get_start_bus()));
}
UNMAP_AFTER_INIT void MMIOAccess::initialize(PhysicalAddress mcfg)
{
if (!Access::is_initialized()) {
new MMIOAccess(mcfg);
dbgln_if(PCI_DEBUG, "PCI: MMIO access initialised.");
}
}
UNMAP_AFTER_INIT MMIOAccess::MMIOAccess(PhysicalAddress p_mcfg)
: m_mcfg(p_mcfg)
{
dmesgln("PCI: Using MMIO for PCI configuration space access");
auto checkup_region = MM.allocate_kernel_region(p_mcfg.page_base(), (PAGE_SIZE * 2), "PCI MCFG Checkup", Region::Access::Read | Region::Access::Write);
dbgln_if(PCI_DEBUG, "PCI: Checking MCFG Table length to choose the correct mapping size");
auto* sdt = (ACPI::Structures::SDTHeader*)checkup_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr();
u32 length = sdt->length;
u8 revision = sdt->revision;
dbgln("PCI: MCFG, length: {}, revision: {}", length, revision);
checkup_region->unmap();
auto mcfg_region = MM.allocate_kernel_region(p_mcfg.page_base(), page_round_up(length) + PAGE_SIZE, "PCI Parsing MCFG", Region::Access::Read | Region::Access::Write);
auto& mcfg = *(ACPI::Structures::MCFG*)mcfg_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr();
dbgln_if(PCI_DEBUG, "PCI: Checking MCFG @ {}, {}", VirtualAddress(&mcfg), PhysicalAddress(p_mcfg.get()));
for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) {
u8 start_bus = mcfg.descriptors[index].start_pci_bus;
u8 end_bus = mcfg.descriptors[index].end_pci_bus;
u32 lower_addr = mcfg.descriptors[index].base_addr;
m_segments.set(index, { PhysicalAddress(lower_addr), start_bus, end_bus });
dmesgln("PCI: New PCI segment @ {}, PCI buses ({}-{})", PhysicalAddress { lower_addr }, start_bus, end_bus);
}
mcfg_region->unmap();
dmesgln("PCI: MMIO segments: {}", m_segments.size());
InterruptDisabler disabler;
VERIFY(m_segments.contains(0));
// Note: we need to map this region before enumerating the hardware and adding
// PCI::PhysicalID objects to the vector, because get_capabilities calls
// PCI::read16 which will need this region to be mapped.
m_mapped_region = MM.allocate_kernel_region(determine_memory_mapped_bus_region(0, m_segments.get(0).value().get_start_bus()), MEMORY_RANGE_PER_BUS, "PCI ECAM", Region::Access::Read | Region::Access::Write);
dbgln("PCI ECAM Mapped region @ {}", m_mapped_region->vaddr());
enumerate_hardware([&](const Address& address, ID id) {
m_physical_ids.append({ address, id, get_capabilities(address) });
});
}
void MMIOAccess::map_bus_region(u32 segment, u8 bus)
{
VERIFY(m_access_lock.is_locked());
if (m_mapped_bus == bus)
return;
m_mapped_region = MM.allocate_kernel_region(determine_memory_mapped_bus_region(segment, bus), MEMORY_RANGE_PER_BUS, "PCI ECAM", Region::Access::Read | Region::Access::Write);
}
VirtualAddress MMIOAccess::get_device_configuration_space(Address address)
{
VERIFY(m_access_lock.is_locked());
dbgln_if(PCI_DEBUG, "PCI: Getting device configuration space for {}", address);
map_bus_region(address.seg(), address.bus());
return m_mapped_region->vaddr().offset(PCI_MMIO_CONFIG_SPACE_SIZE * address.function() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE) * address.device());
}
u8 MMIOAccess::read8_field(Address address, u32 field)
{
ScopedSpinLock lock(m_access_lock);
VERIFY(field <= 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 8-bit field {:#08x} for {}", field, address);
return *((volatile u8*)(get_device_configuration_space(address).get() + (field & 0xfff)));
}
u16 MMIOAccess::read16_field(Address address, u32 field)
{
ScopedSpinLock lock(m_access_lock);
VERIFY(field < 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 16-bit field {:#08x} for {}", field, address);
u16 data = 0;
read_possibly_unaligned_data<u16>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), data);
return data;
}
u32 MMIOAccess::read32_field(Address address, u32 field)
{
ScopedSpinLock lock(m_access_lock);
VERIFY(field <= 0xffc);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 32-bit field {:#08x} for {}", field, address);
u32 data = 0;
read_possibly_unaligned_data<u32>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), data);
return data;
}
void MMIOAccess::write8_field(Address address, u32 field, u8 value)
{
ScopedSpinLock lock(m_access_lock);
VERIFY(field <= 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 8-bit field {:#08x}, value={:#02x} for {}", field, value, address);
*((volatile u8*)(get_device_configuration_space(address).get() + (field & 0xfff))) = value;
}
void MMIOAccess::write16_field(Address address, u32 field, u16 value)
{
ScopedSpinLock lock(m_access_lock);
VERIFY(field < 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 16-bit field {:#08x}, value={:#02x} for {}", field, value, address);
write_possibly_unaligned_data<u16>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), value);
}
void MMIOAccess::write32_field(Address address, u32 field, u32 value)
{
ScopedSpinLock lock(m_access_lock);
VERIFY(field <= 0xffc);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 32-bit field {:#08x}, value={:#02x} for {}", field, value, address);
write_possibly_unaligned_data<u32>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), value);
}
void MMIOAccess::enumerate_hardware(Function<void(Address, ID)> callback)
{
for (u16 seg = 0; seg < m_segments.size(); seg++) {
dbgln_if(PCI_DEBUG, "PCI: Enumerating Memory mapped IO segment {}", seg);
// Single PCI host controller.
if ((early_read8_field(Address(seg), PCI_HEADER_TYPE) & 0x80) == 0) {
enumerate_bus(-1, 0, callback, true);
return;
}
// Multiple PCI host controllers.
for (u8 function = 0; function < 8; ++function) {
if (early_read16_field(Address(seg, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE)
break;
enumerate_bus(-1, function, callback, false);
}
}
}
MMIOAccess::MMIOSegment::MMIOSegment(PhysicalAddress segment_base_addr, u8 start_bus, u8 end_bus)
: m_base_addr(segment_base_addr)
, m_start_bus(start_bus)
, m_end_bus(end_bus)
{
}
u8 MMIOAccess::MMIOSegment::get_start_bus() const
{
return m_start_bus;
}
u8 MMIOAccess::MMIOSegment::get_end_bus() const
{
return m_end_bus;
}
size_t MMIOAccess::MMIOSegment::get_size() const
{
return (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS * (get_end_bus() - get_start_bus()));
}
PhysicalAddress MMIOAccess::MMIOSegment::get_paddr() const
{
return m_base_addr;
}
}
}