ladybird/Libraries/LibGfx/Point.h
AnotherTest b2d698472b LibGfx: Add a 'Point::absolute_relative_distance_to(Point)'
This is significantly more elegant than subtracting the points and
constructing another point from the abs() of their individual
components.
2020-11-30 12:07:45 +01:00

246 lines
5.9 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Forward.h>
#include <AK/StdLibExtras.h>
#include <LibGfx/Forward.h>
#include <LibGfx/Orientation.h>
#include <LibIPC/Forward.h>
#include <math.h>
#include <stdlib.h>
namespace Gfx {
template<typename T>
class Point {
public:
Point() { }
Point(T x, T y)
: m_x(x)
, m_y(y)
{
}
template<typename U>
Point(U x, U y)
: m_x(x)
, m_y(y)
{
}
template<typename U>
explicit Point(const Point<U>& other)
: m_x(other.x())
, m_y(other.y())
{
}
T x() const { return m_x; }
T y() const { return m_y; }
void set_x(T x) { m_x = x; }
void set_y(T y) { m_y = y; }
void move_by(T dx, T dy)
{
m_x += dx;
m_y += dy;
}
void move_by(const Point<T>& delta)
{
move_by(delta.x(), delta.y());
}
Point<T> translated(const Point<T>& delta) const
{
Point<T> point = *this;
point.move_by(delta);
return point;
}
Point<T> translated(T dx, T dy) const
{
Point<T> point = *this;
point.move_by(dx, dy);
return point;
}
Point<T> translated(T dboth) const
{
Point<T> point = *this;
point.move_by(dboth, dboth);
return point;
}
void constrain(const Rect<T>&);
Point<T> constrained(const Rect<T>& rect) const
{
Point<T> point = *this;
point.constrain(rect);
return point;
}
bool operator==(const Point<T>& other) const
{
return m_x == other.m_x && m_y == other.m_y;
}
bool operator!=(const Point<T>& other) const
{
return !(*this == other);
}
Point<T> operator+(const Point<T>& other) const { return { m_x + other.m_x, m_y + other.m_y }; }
Point<T>& operator+=(const Point<T>& other)
{
m_x += other.m_x;
m_y += other.m_y;
return *this;
}
Point<T> operator-() const { return { -m_x, -m_y }; }
Point<T> operator-(const Point<T>& other) const { return { m_x - other.m_x, m_y - other.m_y }; }
Point<T>& operator-=(const Point<T>& other)
{
m_x -= other.m_x;
m_y -= other.m_y;
return *this;
}
Point<T> operator*(int factor) const { return { m_x * factor, m_y * factor }; }
Point<T>& operator*=(T factor)
{
m_x *= factor;
m_y *= factor;
return *this;
}
Point<T> operator/(int factor) const { return { m_x / factor, m_y / factor }; }
Point<T>& operator/=(int factor)
{
m_x /= factor;
m_y /= factor;
return *this;
}
bool is_null() const { return !m_x && !m_y; }
T primary_offset_for_orientation(Orientation orientation) const
{
return orientation == Orientation::Vertical ? y() : x();
}
void set_primary_offset_for_orientation(Orientation orientation, T value)
{
if (orientation == Orientation::Vertical) {
set_y(value);
} else {
set_x(value);
}
}
T secondary_offset_for_orientation(Orientation orientation) const
{
return orientation == Orientation::Vertical ? x() : y();
}
void set_secondary_offset_for_orientation(Orientation orientation, T value)
{
if (orientation == Orientation::Vertical) {
set_x(value);
} else {
set_y(value);
}
}
T dx_relative_to(const Point<T>& other) const
{
return x() - other.x();
}
T dy_relative_to(const Point<T>& other) const
{
return y() - other.y();
}
// Returns pixels moved from other in either direction
T pixels_moved(const Point<T>& other) const
{
return max(abs(dx_relative_to(other)), abs(dy_relative_to(other)));
}
float distance_from(const Point<T>& other) const
{
if (*this == other)
return 0;
return sqrtf(powf(m_x - other.m_x, 2.0f) + powf(m_y - other.m_y, 2.0f));
}
Point absolute_relative_distance_to(const Point& other) const
{
return { abs(dx_relative_to(other)), abs(dy_relative_to(other)) };
}
template<typename U>
Point<U> to_type() const
{
return Point<U>(*this);
}
String to_string() const;
private:
T m_x { 0 };
T m_y { 0 };
};
template<typename T>
const LogStream& operator<<(const LogStream& stream, const Point<T>& point)
{
return stream << point.to_string();
}
using IntPoint = Point<int>;
using FloatPoint = Point<float>;
}
namespace IPC {
bool encode(Encoder&, const Gfx::IntPoint&);
bool decode(Decoder&, Gfx::IntPoint&);
}