ladybird/Kernel/Arch/aarch64/MMU.cpp

308 lines
12 KiB
C++

/*
* Copyright (c) 2021, James Mintram <me@jamesrm.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Types.h>
#include <Kernel/Arch/aarch64/CPU.h>
#include <Kernel/Arch/PageDirectory.h>
#include <Kernel/Arch/aarch64/ASM_wrapper.h>
#include <Kernel/Arch/aarch64/RPi/MMIO.h>
#include <Kernel/Arch/aarch64/RPi/UART.h>
#include <Kernel/Arch/aarch64/Registers.h>
#include <Kernel/Boot/BootInfo.h>
#include <Kernel/Library/Panic.h>
#include <Kernel/Sections.h>
// Documentation here for Aarch64 Address Translations
// https://documentation-service.arm.com/static/5efa1d23dbdee951c1ccdec5?token=
// These come from the linker script
extern u8 page_tables_phys_start[];
extern u8 page_tables_phys_end[];
extern u8 start_of_kernel_image[];
extern u8 end_of_kernel_image[];
namespace Kernel::Memory {
// physical memory
constexpr u32 START_OF_NORMAL_MEMORY = 0x00000000;
constexpr u32 END_OF_NORMAL_MEMORY = 0x3EFFFFFF;
ALWAYS_INLINE static u64* descriptor_to_pointer(FlatPtr descriptor)
{
return (u64*)(descriptor & DESCRIPTOR_MASK);
}
namespace {
class PageBumpAllocator {
public:
PageBumpAllocator(u64* start, u64* end)
: m_start(start)
, m_end(end)
, m_current(start)
{
if (m_start >= m_end) {
panic_without_mmu("Invalid memory range passed to PageBumpAllocator"sv);
}
if ((FlatPtr)m_start % PAGE_TABLE_SIZE != 0 || (FlatPtr)m_end % PAGE_TABLE_SIZE != 0) {
panic_without_mmu("Memory range passed into PageBumpAllocator not aligned to PAGE_TABLE_SIZE"sv);
}
}
u64* take_page()
{
if (m_current == m_end) {
panic_without_mmu("Prekernel pagetable memory exhausted"sv);
}
u64* page = m_current;
m_current += (PAGE_TABLE_SIZE / sizeof(FlatPtr));
zero_page(page);
return page;
}
private:
void zero_page(u64* page)
{
// Memset all page table memory to zero
for (u64* p = page; p < page + (PAGE_TABLE_SIZE / sizeof(u64)); p++) {
*p = 0;
}
}
u64 const* m_start;
u64 const* m_end;
u64* m_current;
};
}
// NOTE: To access global variables while the MMU is not yet enabled, we need
// to convert the address of a global variable to a physical address by
// subtracting KERNEL_MAPPING_BASE. This is because the kernel is linked
// for virtual memory at KERNEL_MAPPING_BASE, so a regular access to global variables
// will use the high virtual memory address. This does not work when the MMU is not yet
// enabled, so this function must be used for accessing global variables.
template<typename T>
inline T* adjust_by_mapping_base(T* ptr)
{
return (T*)((FlatPtr)ptr - KERNEL_MAPPING_BASE);
}
static u64* insert_page_table(PageBumpAllocator& allocator, u64* page_table, VirtualAddress virtual_addr)
{
// Each level has 9 bits (512 entries)
u64 level0_idx = (virtual_addr.get() >> 39) & 0x1FF;
u64 level1_idx = (virtual_addr.get() >> 30) & 0x1FF;
u64 level2_idx = (virtual_addr.get() >> 21) & 0x1FF;
u64* level1_table = page_table;
if (level1_table[level0_idx] == 0) {
level1_table[level0_idx] = (FlatPtr)allocator.take_page();
level1_table[level0_idx] |= TABLE_DESCRIPTOR;
}
u64* level2_table = descriptor_to_pointer(level1_table[level0_idx]);
if (level2_table[level1_idx] == 0) {
level2_table[level1_idx] = (FlatPtr)allocator.take_page();
level2_table[level1_idx] |= TABLE_DESCRIPTOR;
}
u64* level3_table = descriptor_to_pointer(level2_table[level1_idx]);
if (level3_table[level2_idx] == 0) {
level3_table[level2_idx] = (FlatPtr)allocator.take_page();
level3_table[level2_idx] |= TABLE_DESCRIPTOR;
}
return descriptor_to_pointer(level3_table[level2_idx]);
}
static void insert_entries_for_memory_range(PageBumpAllocator& allocator, u64* page_table, VirtualAddress start, VirtualAddress end, PhysicalAddress paddr, u64 flags)
{
// Not very efficient, but simple and it works.
for (VirtualAddress addr = start; addr < end;) {
u64* level4_table = insert_page_table(allocator, page_table, addr);
u64 level3_idx = (addr.get() >> 12) & 0x1FF;
u64* l4_entry = &level4_table[level3_idx];
*l4_entry = paddr.get();
*l4_entry |= flags;
addr = addr.offset(GRANULE_SIZE);
paddr = paddr.offset(GRANULE_SIZE);
}
}
static void setup_quickmap_page_table(PageBumpAllocator& allocator, u64* root_table)
{
// FIXME: Rename boot_pd_kernel_pt1023 to quickmap_page_table
// FIXME: Rename KERNEL_PT1024_BASE to quickmap_page_table_address
auto kernel_pt1024_base = VirtualAddress(*adjust_by_mapping_base(&kernel_mapping_base) + KERNEL_PT1024_OFFSET);
auto quickmap_page_table = PhysicalAddress((PhysicalPtr)insert_page_table(allocator, root_table, kernel_pt1024_base));
*adjust_by_mapping_base(&boot_pd_kernel_pt1023) = (PageTableEntry*)quickmap_page_table.offset(KERNEL_MAPPING_BASE).get();
}
static void build_mappings(PageBumpAllocator& allocator, u64* root_table)
{
u64 normal_memory_flags = ACCESS_FLAG | PAGE_DESCRIPTOR | INNER_SHAREABLE | NORMAL_MEMORY;
u64 device_memory_flags = ACCESS_FLAG | PAGE_DESCRIPTOR | OUTER_SHAREABLE | DEVICE_MEMORY;
// TODO: We should change the RPi drivers to use the MemoryManager to map physical memory,
// instead of mapping the complete MMIO region beforehand.
auto mmio_base = RPi::MMIO::the().peripheral_base_address().get();
auto mmio_end = RPi::MMIO::the().peripheral_end_address().get();
// Align the identity mapping of the kernel image to 2 MiB, the rest of the memory is initially not mapped.
auto start_of_kernel_range = VirtualAddress((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
auto end_of_kernel_range = VirtualAddress(((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000 - 1);
auto start_of_mmio_range = VirtualAddress(mmio_base + KERNEL_MAPPING_BASE);
auto end_of_mmio_range = VirtualAddress(mmio_end + KERNEL_MAPPING_BASE);
auto start_of_physical_kernel_range = PhysicalAddress(start_of_kernel_range.get()).offset(-KERNEL_MAPPING_BASE);
auto start_of_physical_mmio_range = PhysicalAddress(start_of_mmio_range.get()).offset(-KERNEL_MAPPING_BASE);
// Insert identity mappings
insert_entries_for_memory_range(allocator, root_table, start_of_kernel_range.offset(-KERNEL_MAPPING_BASE), end_of_kernel_range.offset(-KERNEL_MAPPING_BASE), start_of_physical_kernel_range, normal_memory_flags);
insert_entries_for_memory_range(allocator, root_table, start_of_mmio_range.offset(-KERNEL_MAPPING_BASE), end_of_mmio_range.offset(-KERNEL_MAPPING_BASE), start_of_physical_mmio_range, device_memory_flags);
// Map kernel and MMIO into high virtual memory
insert_entries_for_memory_range(allocator, root_table, start_of_kernel_range, end_of_kernel_range, start_of_physical_kernel_range, normal_memory_flags);
insert_entries_for_memory_range(allocator, root_table, start_of_mmio_range, end_of_mmio_range, start_of_physical_mmio_range, device_memory_flags);
}
static void switch_to_page_table(u8* page_table)
{
Aarch64::Asm::set_ttbr0_el1((FlatPtr)page_table);
Aarch64::Asm::set_ttbr1_el1((FlatPtr)page_table);
}
static void activate_mmu()
{
Aarch64::MAIR_EL1 mair_el1 = {};
mair_el1.Attr[0] = 0xFF; // Normal memory
mair_el1.Attr[1] = 0b00000100; // Device-nGnRE memory (non-cacheble)
Aarch64::MAIR_EL1::write(mair_el1);
// Configure cacheability attributes for memory associated with translation table walks
Aarch64::TCR_EL1 tcr_el1 = {};
tcr_el1.SH1 = Aarch64::TCR_EL1::InnerShareable;
tcr_el1.ORGN1 = Aarch64::TCR_EL1::NormalMemory_Outer_WriteBack_ReadAllocate_WriteAllocateCacheable;
tcr_el1.IRGN1 = Aarch64::TCR_EL1::NormalMemory_Inner_WriteBack_ReadAllocate_WriteAllocateCacheable;
tcr_el1.T1SZ = 16;
tcr_el1.SH0 = Aarch64::TCR_EL1::InnerShareable;
tcr_el1.ORGN0 = Aarch64::TCR_EL1::NormalMemory_Outer_WriteBack_ReadAllocate_WriteAllocateCacheable;
tcr_el1.IRGN0 = Aarch64::TCR_EL1::NormalMemory_Inner_WriteBack_ReadAllocate_WriteAllocateCacheable;
tcr_el1.T0SZ = 16;
tcr_el1.TG1 = Aarch64::TCR_EL1::TG1GranuleSize::Size_4KB;
tcr_el1.TG0 = Aarch64::TCR_EL1::TG0GranuleSize::Size_4KB;
// Auto detect the Intermediate Physical Address Size
Aarch64::ID_AA64MMFR0_EL1 feature_register = Aarch64::ID_AA64MMFR0_EL1::read();
tcr_el1.IPS = feature_register.PARange;
Aarch64::TCR_EL1::write(tcr_el1);
// Enable MMU in the system control register
Aarch64::SCTLR_EL1 sctlr_el1 = Aarch64::SCTLR_EL1::reset_value();
sctlr_el1.M = 1; // Enable MMU
sctlr_el1.C = 1; // Enable data cache
sctlr_el1.I = 1; // Enable instruction cache
Aarch64::SCTLR_EL1::write(sctlr_el1);
Aarch64::Asm::flush();
}
static u64* get_page_directory(u64* root_table, VirtualAddress virtual_addr)
{
u64 level0_idx = (virtual_addr.get() >> 39) & 0x1FF;
u64 level1_idx = (virtual_addr.get() >> 30) & 0x1FF;
u64* level1_table = root_table;
if (level1_table[level0_idx] == 0)
return nullptr;
u64* level2_table = descriptor_to_pointer(level1_table[level0_idx]);
if (level2_table[level1_idx] == 0)
return nullptr;
return descriptor_to_pointer(level2_table[level1_idx]);
}
static u64* get_page_directory_table(u64* root_table, VirtualAddress virtual_addr)
{
u64 level0_idx = (virtual_addr.get() >> 39) & 0x1FF;
u64* level1_table = root_table;
if (level1_table[level0_idx] == 0)
return nullptr;
return descriptor_to_pointer(level1_table[level0_idx]);
}
static void setup_kernel_page_directory(u64* root_table)
{
auto kernel_page_directory = (PhysicalPtr)get_page_directory(root_table, VirtualAddress { *adjust_by_mapping_base(&kernel_mapping_base) });
if (!kernel_page_directory)
panic_without_mmu("Could not find kernel page directory!"sv);
*adjust_by_mapping_base(&boot_pd_kernel) = PhysicalAddress(kernel_page_directory);
// FIXME: Rename boot_pml4t to something architecture agnostic.
*adjust_by_mapping_base(&boot_pml4t) = PhysicalAddress((PhysicalPtr)root_table);
// FIXME: Rename to directory_table or similar
*adjust_by_mapping_base(&boot_pdpt) = PhysicalAddress((PhysicalPtr)get_page_directory_table(root_table, VirtualAddress { *adjust_by_mapping_base(&kernel_mapping_base) }));
}
void init_page_tables()
{
*adjust_by_mapping_base(&physical_to_virtual_offset) = KERNEL_MAPPING_BASE;
*adjust_by_mapping_base(&kernel_mapping_base) = KERNEL_MAPPING_BASE;
*adjust_by_mapping_base(&kernel_load_base) = KERNEL_MAPPING_BASE;
PageBumpAllocator allocator(adjust_by_mapping_base((u64*)page_tables_phys_start), adjust_by_mapping_base((u64*)page_tables_phys_end));
auto root_table = allocator.take_page();
build_mappings(allocator, root_table);
setup_quickmap_page_table(allocator, root_table);
setup_kernel_page_directory(root_table);
switch_to_page_table(adjust_by_mapping_base(page_tables_phys_start));
activate_mmu();
}
void unmap_identity_map()
{
auto start_of_physical_memory = FlatPtr(START_OF_NORMAL_MEMORY);
u64 level0_idx = (start_of_physical_memory >> 39) & 0x1FF;
u64 level1_idx = (start_of_physical_memory >> 30) & 0x1FF;
u64* level1_table = (u64*)page_tables_phys_start;
auto level2_table = FlatPtr(descriptor_to_pointer(level1_table[level0_idx]));
if (!level2_table)
panic_without_mmu("Could not find table!"sv);
// NOTE: The function descriptor_to_pointer returns a physical address, but we want to unmap that range
// so, the pointer must be converted to a virtual address by adding KERNEL_MAPPING_BASE.
level2_table += KERNEL_MAPPING_BASE;
// Unmap the complete identity map
((u64*)level2_table)[level1_idx] = 0;
}
}