mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-10 13:00:29 +03:00
b33bb0997a
This will be used outside of StyleComputer
250 lines
8.9 KiB
C++
250 lines
8.9 KiB
C++
/*
|
||
* Copyright (c) 2023, Ali Mohammad Pur <mpfard@serenityos.org>
|
||
* Copyright (c) 2023, Matthew Olsson <mattco@serenityos.org>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include <AK/BinarySearch.h>
|
||
#include <LibWeb/Animations/TimingFunction.h>
|
||
#include <LibWeb/CSS/StyleValues/EasingStyleValue.h>
|
||
#include <LibWeb/CSS/StyleValues/IntegerStyleValue.h>
|
||
#include <LibWeb/CSS/StyleValues/NumberStyleValue.h>
|
||
#include <math.h>
|
||
|
||
namespace Web::Animations {
|
||
|
||
// https://www.w3.org/TR/css-easing-1/#linear-easing-function
|
||
double LinearTimingFunction::operator()(double input_progress, bool) const
|
||
{
|
||
return input_progress;
|
||
}
|
||
|
||
static double cubic_bezier_at(double x1, double x2, double t)
|
||
{
|
||
auto a = 1.0 - 3.0 * x2 + 3.0 * x1;
|
||
auto b = 3.0 * x2 - 6.0 * x1;
|
||
auto c = 3.0 * x1;
|
||
|
||
auto t2 = t * t;
|
||
auto t3 = t2 * t;
|
||
|
||
return (a * t3) + (b * t2) + (c * t);
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-easing-1/#cubic-bezier-algo
|
||
double CubicBezierTimingFunction::operator()(double input_progress, bool) const
|
||
{
|
||
// For input progress values outside the range [0, 1], the curve is extended infinitely using tangent of the curve
|
||
// at the closest endpoint as follows:
|
||
|
||
// - For input progress values less than zero,
|
||
if (input_progress < 0.0) {
|
||
// 1. If the x value of P1 is greater than zero, use a straight line that passes through P1 and P0 as the
|
||
// tangent.
|
||
if (x1 > 0.0)
|
||
return y1 / x1 * input_progress;
|
||
|
||
// 2. Otherwise, if the x value of P2 is greater than zero, use a straight line that passes through P2 and P0 as
|
||
// the tangent.
|
||
if (x2 > 0.0)
|
||
return y2 / x2 * input_progress;
|
||
|
||
// 3. Otherwise, let the output progress value be zero for all input progress values in the range [-∞, 0).
|
||
return 0.0;
|
||
}
|
||
|
||
// - For input progress values greater than one,
|
||
if (input_progress > 1.0) {
|
||
// 1. If the x value of P2 is less than one, use a straight line that passes through P2 and P3 as the tangent.
|
||
if (x2 < 1.0)
|
||
return (1.0 - y2) / (1.0 - x2) * (input_progress - 1.0) + 1.0;
|
||
|
||
// 2. Otherwise, if the x value of P1 is less than one, use a straight line that passes through P1 and P3 as the
|
||
// tangent.
|
||
if (x1 < 1.0)
|
||
return (1.0 - y1) / (1.0 - x1) * (input_progress - 1.0) + 1.0;
|
||
|
||
// 3. Otherwise, let the output progress value be one for all input progress values in the range (1, ∞].
|
||
return 1.0;
|
||
}
|
||
|
||
// Note: The spec does not specify the precise algorithm for calculating values in the range [0, 1]:
|
||
// "The evaluation of this curve is covered in many sources such as [FUND-COMP-GRAPHICS]."
|
||
|
||
auto x = input_progress;
|
||
|
||
auto solve = [&](auto t) {
|
||
auto x = cubic_bezier_at(x1, x2, t);
|
||
auto y = cubic_bezier_at(y1, y2, t);
|
||
return CachedSample { x, y, t };
|
||
};
|
||
|
||
if (m_cached_x_samples.is_empty())
|
||
m_cached_x_samples.append(solve(0.));
|
||
|
||
size_t nearby_index = 0;
|
||
if (auto found = binary_search(m_cached_x_samples, x, &nearby_index, [](auto x, auto& sample) {
|
||
if (x > sample.x)
|
||
return 1;
|
||
if (x < sample.x)
|
||
return -1;
|
||
return 0;
|
||
}))
|
||
return found->y;
|
||
|
||
if (nearby_index == m_cached_x_samples.size() || nearby_index + 1 == m_cached_x_samples.size()) {
|
||
// Produce more samples until we have enough.
|
||
auto last_t = m_cached_x_samples.is_empty() ? 0 : m_cached_x_samples.last().t;
|
||
auto last_x = m_cached_x_samples.is_empty() ? 0 : m_cached_x_samples.last().x;
|
||
while (last_x <= x) {
|
||
last_t += 1. / 60.;
|
||
auto solution = solve(last_t);
|
||
m_cached_x_samples.append(solution);
|
||
last_x = solution.x;
|
||
}
|
||
|
||
if (auto found = binary_search(m_cached_x_samples, x, &nearby_index, [](auto x, auto& sample) {
|
||
if (x > sample.x)
|
||
return 1;
|
||
if (x < sample.x)
|
||
return -1;
|
||
return 0;
|
||
}))
|
||
return found->y;
|
||
}
|
||
|
||
// We have two samples on either side of the x value we want, so we can linearly interpolate between them.
|
||
auto& sample1 = m_cached_x_samples[nearby_index];
|
||
auto& sample2 = m_cached_x_samples[nearby_index + 1];
|
||
auto factor = (x - sample1.x) / (sample2.x - sample1.x);
|
||
return clamp(sample1.y + factor * (sample2.y - sample1.y), 0, 1);
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-easing-1/#step-easing-algo
|
||
double StepsTimingFunction::operator()(double input_progress, bool before_flag) const
|
||
{
|
||
// 1. Calculate the current step as floor(input progress value × steps).
|
||
auto current_step = floor(input_progress * number_of_steps);
|
||
|
||
// 2. If the step position property is one of:
|
||
// - jump-start,
|
||
// - jump-both,
|
||
// increment current step by one.
|
||
if (jump_at_start)
|
||
current_step += 1;
|
||
|
||
// 3. If both of the following conditions are true:
|
||
// - the before flag is set, and
|
||
// - input progress value × steps mod 1 equals zero (that is, if input progress value × steps is integral), then
|
||
// decrement current step by one.
|
||
auto step_progress = input_progress * number_of_steps;
|
||
if (before_flag && trunc(step_progress) == step_progress)
|
||
current_step -= 1;
|
||
|
||
// 4. If input progress value ≥ 0 and current step < 0, let current step be zero.
|
||
if (input_progress >= 0.0 && current_step < 0.0)
|
||
current_step = 0.0;
|
||
|
||
// 5. Calculate jumps based on the step position as follows:
|
||
|
||
// jump-start or jump-end -> steps
|
||
// jump-none -> steps - 1
|
||
// jump-both -> steps + 1
|
||
double jumps;
|
||
if (jump_at_start ^ jump_at_end)
|
||
jumps = number_of_steps;
|
||
else if (jump_at_start && jump_at_end)
|
||
jumps = number_of_steps + 1;
|
||
else
|
||
jumps = number_of_steps - 1;
|
||
|
||
// 6. If input progress value ≤ 1 and current step > jumps, let current step be jumps.
|
||
if (input_progress <= 1.0 && current_step > jumps)
|
||
current_step = jumps;
|
||
|
||
// 7. The output progress value is current step / jumps.
|
||
return current_step / jumps;
|
||
}
|
||
|
||
TimingFunction TimingFunction::from_easing_style_value(CSS::EasingStyleValue const& easing_value)
|
||
{
|
||
switch (easing_value.easing_function()) {
|
||
case CSS::EasingFunction::Linear:
|
||
return Animations::linear_timing_function;
|
||
case CSS::EasingFunction::Ease:
|
||
return Animations::ease_timing_function;
|
||
case CSS::EasingFunction::EaseIn:
|
||
return Animations::ease_in_timing_function;
|
||
case CSS::EasingFunction::EaseOut:
|
||
return Animations::ease_out_timing_function;
|
||
case CSS::EasingFunction::EaseInOut:
|
||
return Animations::ease_in_out_timing_function;
|
||
case CSS::EasingFunction::CubicBezier: {
|
||
auto values = easing_value.values();
|
||
return {
|
||
Animations::CubicBezierTimingFunction {
|
||
values[0]->as_number().number(),
|
||
values[1]->as_number().number(),
|
||
values[2]->as_number().number(),
|
||
values[3]->as_number().number(),
|
||
},
|
||
};
|
||
}
|
||
case CSS::EasingFunction::Steps: {
|
||
auto values = easing_value.values();
|
||
auto jump_at_start = false;
|
||
auto jump_at_end = true;
|
||
|
||
if (values.size() > 1) {
|
||
auto identifier = values[1]->to_identifier();
|
||
switch (identifier) {
|
||
case CSS::ValueID::JumpStart:
|
||
case CSS::ValueID::Start:
|
||
jump_at_start = true;
|
||
jump_at_end = false;
|
||
break;
|
||
case CSS::ValueID::JumpEnd:
|
||
case CSS::ValueID::End:
|
||
jump_at_start = false;
|
||
jump_at_end = true;
|
||
break;
|
||
case CSS::ValueID::JumpNone:
|
||
jump_at_start = false;
|
||
jump_at_end = false;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return Animations::TimingFunction { Animations::StepsTimingFunction {
|
||
.number_of_steps = static_cast<size_t>(max(values[0]->as_integer().integer(), !(jump_at_end && jump_at_start) ? 1 : 0)),
|
||
.jump_at_start = jump_at_start,
|
||
.jump_at_end = jump_at_end,
|
||
} };
|
||
}
|
||
case CSS::EasingFunction::StepEnd:
|
||
return Animations::TimingFunction { Animations::StepsTimingFunction {
|
||
.number_of_steps = 1,
|
||
.jump_at_start = false,
|
||
.jump_at_end = true,
|
||
} };
|
||
case CSS::EasingFunction::StepStart:
|
||
return Animations::TimingFunction { Animations::StepsTimingFunction {
|
||
.number_of_steps = 1,
|
||
.jump_at_start = true,
|
||
.jump_at_end = false,
|
||
} };
|
||
default:
|
||
return Animations::ease_timing_function;
|
||
}
|
||
}
|
||
|
||
double TimingFunction::operator()(double input_progress, bool before_flag) const
|
||
{
|
||
return function.visit([&](auto const& f) { return f(input_progress, before_flag); });
|
||
}
|
||
|
||
}
|