ladybird/Userland/Libraries/LibGfx/Painter.cpp

2563 lines
101 KiB
C++

/*
* Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
* Copyright (c) 2021, Mustafa Quraish <mustafa@serenityos.org>
* Copyright (c) 2021, Sam Atkins <atkinssj@serenityos.org>
* Copyright (c) 2022, Tobias Christiansen <tobyase@serenityos.org>
* Copyright (c) 2022, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Painter.h"
#include "Bitmap.h"
#include "Font/Emoji.h"
#include "Font/Font.h"
#include <AK/Assertions.h>
#include <AK/Debug.h>
#include <AK/Function.h>
#include <AK/Math.h>
#include <AK/Memory.h>
#include <AK/Queue.h>
#include <AK/QuickSort.h>
#include <AK/Stack.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>
#include <AK/Utf32View.h>
#include <AK/Utf8View.h>
#include <LibGfx/CharacterBitmap.h>
#include <LibGfx/Palette.h>
#include <LibGfx/Path.h>
#include <LibGfx/Quad.h>
#include <LibGfx/TextDirection.h>
#include <LibGfx/TextLayout.h>
#include <LibUnicode/CharacterTypes.h>
#include <LibUnicode/Emoji.h>
#include <stdio.h>
#if defined(AK_COMPILER_GCC)
# pragma GCC optimize("O3")
#endif
namespace Gfx {
template<BitmapFormat format = BitmapFormat::Invalid>
ALWAYS_INLINE Color get_pixel(Gfx::Bitmap const& bitmap, int x, int y)
{
if constexpr (format == BitmapFormat::BGRx8888)
return Color::from_rgb(bitmap.scanline(y)[x]);
if constexpr (format == BitmapFormat::BGRA8888)
return Color::from_argb(bitmap.scanline(y)[x]);
return bitmap.get_pixel(x, y);
}
Painter::Painter(Gfx::Bitmap& bitmap)
: m_target(bitmap)
{
int scale = bitmap.scale();
VERIFY(bitmap.format() == Gfx::BitmapFormat::BGRx8888 || bitmap.format() == Gfx::BitmapFormat::BGRA8888);
VERIFY(bitmap.physical_width() % scale == 0);
VERIFY(bitmap.physical_height() % scale == 0);
m_state_stack.append(State());
state().font = nullptr;
state().clip_rect = { { 0, 0 }, bitmap.size() };
state().scale = scale;
m_clip_origin = state().clip_rect;
}
void Painter::fill_rect_with_draw_op(IntRect const& a_rect, Color color)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
ARGB32* dst = m_target->scanline(rect.top()) + rect.left();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
for (int i = rect.height() - 1; i >= 0; --i) {
for (int j = 0; j < rect.width(); ++j)
set_physical_pixel_with_draw_op(dst[j], color);
dst += dst_skip;
}
}
void Painter::clear_rect(IntRect const& a_rect, Color color)
{
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
VERIFY(m_target->rect().contains(rect));
rect *= scale();
ARGB32* dst = m_target->scanline(rect.top()) + rect.left();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
for (int i = rect.height() - 1; i >= 0; --i) {
fast_u32_fill(dst, color.value(), rect.width());
dst += dst_skip;
}
}
void Painter::fill_physical_rect(IntRect const& physical_rect, Color color)
{
// Callers must do clipping.
ARGB32* dst = m_target->scanline(physical_rect.top()) + physical_rect.left();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
auto dst_format = target()->format();
for (int i = physical_rect.height() - 1; i >= 0; --i) {
for (int j = 0; j < physical_rect.width(); ++j)
dst[j] = color_for_format(dst_format, dst[j]).blend(color).value();
dst += dst_skip;
}
}
void Painter::fill_rect(IntRect const& a_rect, Color color)
{
if (color.alpha() == 0)
return;
if (draw_op() != DrawOp::Copy) {
fill_rect_with_draw_op(a_rect, color);
return;
}
if (color.alpha() == 0xff) {
clear_rect(a_rect, color);
return;
}
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
VERIFY(m_target->rect().contains(rect));
fill_physical_rect(rect * scale(), color);
}
void Painter::fill_rect(IntRect const& rect, PaintStyle const& paint_style)
{
auto a_rect = rect.translated(translation());
auto clipped_rect = a_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
a_rect *= scale();
clipped_rect *= scale();
auto start_offset = clipped_rect.location() - a_rect.location();
paint_style.paint(a_rect, [&](PaintStyle::SamplerFunction sample) {
for (int y = 0; y < clipped_rect.height(); ++y) {
for (int x = 0; x < clipped_rect.width(); ++x) {
IntPoint point(x, y);
set_physical_pixel(point + clipped_rect.location(), sample(point + start_offset), true);
}
}
});
}
void Painter::fill_rect_with_dither_pattern(IntRect const& a_rect, Color color_a, Color color_b)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
ARGB32* dst = m_target->scanline(rect.top()) + rect.left();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
for (int i = 0; i < rect.height(); ++i) {
for (int j = 0; j < rect.width(); ++j) {
bool checkboard_use_a = ((rect.left() + i) & 1) ^ ((rect.top() + j) & 1);
if (checkboard_use_a && !color_a.alpha())
continue;
if (!checkboard_use_a && !color_b.alpha())
continue;
dst[j] = checkboard_use_a ? color_a.value() : color_b.value();
}
dst += dst_skip;
}
}
void Painter::fill_rect_with_checkerboard(IntRect const& a_rect, IntSize cell_size, Color color_dark, Color color_light)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
auto translated_rect = a_rect.translated(translation());
auto rect = translated_rect.intersected(clip_rect());
if (rect.is_empty())
return;
ARGB32* dst = m_target->scanline(rect.top()) + rect.left();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
int first_cell_column = (rect.x() - translated_rect.x()) / cell_size.width();
int prologue_length = min(rect.width(), cell_size.width() - ((rect.x() - translated_rect.x()) % cell_size.width()));
int number_of_aligned_strips = (rect.width() - prologue_length) / cell_size.width();
for (int i = 0; i < rect.height(); ++i) {
int y = rect.y() - translated_rect.y() + i;
int cell_row = y / cell_size.height();
bool odd_row = cell_row & 1;
// Prologue: Paint the unaligned part up to the first intersection.
int j = 0;
int cell_column = first_cell_column;
{
bool odd_cell = cell_column & 1;
auto color = (odd_row ^ odd_cell) ? color_light.value() : color_dark.value();
fast_u32_fill(&dst[j], color, prologue_length);
j += prologue_length;
}
// Aligned run: Paint the maximum number of aligned cell strips.
for (int strip = 0; strip < number_of_aligned_strips; ++strip) {
++cell_column;
bool odd_cell = cell_column & 1;
auto color = (odd_row ^ odd_cell) ? color_light.value() : color_dark.value();
fast_u32_fill(&dst[j], color, cell_size.width());
j += cell_size.width();
}
// Epilogue: Paint the unaligned part until the end of the rect.
if (j != rect.width()) {
++cell_column;
bool odd_cell = cell_column & 1;
auto color = (odd_row ^ odd_cell) ? color_light.value() : color_dark.value();
int epilogue_length = rect.width() - j;
fast_u32_fill(&dst[j], color, epilogue_length);
j += epilogue_length;
}
dst += dst_skip;
}
}
void Painter::fill_rect_with_gradient(Orientation orientation, IntRect const& a_rect, Color gradient_start, Color gradient_end)
{
if (gradient_start == gradient_end) {
fill_rect(a_rect, gradient_start);
return;
}
return fill_rect_with_linear_gradient(a_rect, Array { ColorStop { gradient_start, 0 }, ColorStop { gradient_end, 1 } }, orientation == Orientation::Horizontal ? 90.0f : 0.0f);
}
void Painter::fill_rect_with_gradient(IntRect const& a_rect, Color gradient_start, Color gradient_end)
{
return fill_rect_with_gradient(Orientation::Horizontal, a_rect, gradient_start, gradient_end);
}
void Painter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int radius)
{
return fill_rect_with_rounded_corners(a_rect, color, radius, radius, radius, radius);
}
void Painter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius)
{
// Fasttrack for rects without any border radii
if (!top_left_radius && !top_right_radius && !bottom_right_radius && !bottom_left_radius)
return fill_rect(a_rect, color);
// Fully transparent, dont care.
if (color.alpha() == 0)
return;
// FIXME: Allow for elliptically rounded corners
IntRect top_left_corner = {
a_rect.x(),
a_rect.y(),
top_left_radius,
top_left_radius
};
IntRect top_right_corner = {
a_rect.x() + a_rect.width() - top_right_radius,
a_rect.y(),
top_right_radius,
top_right_radius
};
IntRect bottom_right_corner = {
a_rect.x() + a_rect.width() - bottom_right_radius,
a_rect.y() + a_rect.height() - bottom_right_radius,
bottom_right_radius,
bottom_right_radius
};
IntRect bottom_left_corner = {
a_rect.x(),
a_rect.y() + a_rect.height() - bottom_left_radius,
bottom_left_radius,
bottom_left_radius
};
IntRect top_rect = {
a_rect.x() + top_left_radius,
a_rect.y(),
a_rect.width() - top_left_radius - top_right_radius, top_left_radius
};
IntRect right_rect = {
a_rect.x() + a_rect.width() - top_right_radius,
a_rect.y() + top_right_radius,
top_right_radius,
a_rect.height() - top_right_radius - bottom_right_radius
};
IntRect bottom_rect = {
a_rect.x() + bottom_left_radius,
a_rect.y() + a_rect.height() - bottom_right_radius,
a_rect.width() - bottom_left_radius - bottom_right_radius,
bottom_right_radius
};
IntRect left_rect = {
a_rect.x(),
a_rect.y() + top_left_radius,
bottom_left_radius,
a_rect.height() - top_left_radius - bottom_left_radius
};
IntRect inner = {
left_rect.x() + left_rect.width(),
left_rect.y(),
a_rect.width() - left_rect.width() - right_rect.width(),
a_rect.height() - top_rect.height() - bottom_rect.height()
};
fill_rect(top_rect, color);
fill_rect(right_rect, color);
fill_rect(bottom_rect, color);
fill_rect(left_rect, color);
fill_rect(inner, color);
if (top_left_radius)
fill_rounded_corner(top_left_corner, top_left_radius, color, CornerOrientation::TopLeft);
if (top_right_radius)
fill_rounded_corner(top_right_corner, top_right_radius, color, CornerOrientation::TopRight);
if (bottom_left_radius)
fill_rounded_corner(bottom_left_corner, bottom_left_radius, color, CornerOrientation::BottomLeft);
if (bottom_right_radius)
fill_rounded_corner(bottom_right_corner, bottom_right_radius, color, CornerOrientation::BottomRight);
}
void Painter::fill_rounded_corner(IntRect const& a_rect, int radius, Color color, CornerOrientation orientation)
{
// Care about clipping
auto translated_a_rect = a_rect.translated(translation());
auto rect = translated_a_rect.intersected(clip_rect());
if (rect.is_empty())
return;
VERIFY(m_target->rect().contains(rect));
// We got cut on the top!
// FIXME: Also account for clipping on the x-axis
int clip_offset = 0;
if (translated_a_rect.y() < rect.y())
clip_offset = rect.y() - translated_a_rect.y();
radius *= scale();
rect *= scale();
clip_offset *= scale();
ARGB32* dst = m_target->scanline(rect.top()) + rect.left();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
IntPoint circle_center;
switch (orientation) {
case CornerOrientation::TopLeft:
circle_center = { radius, radius + 1 };
break;
case CornerOrientation::TopRight:
circle_center = { -1, radius + 1 };
break;
case CornerOrientation::BottomRight:
circle_center = { -1, 0 };
break;
case CornerOrientation::BottomLeft:
circle_center = { radius, 0 };
break;
default:
VERIFY_NOT_REACHED();
}
int radius2 = radius * radius;
auto is_in_circle = [&](int x, int y) {
int distance2 = (circle_center.x() - x) * (circle_center.x() - x) + (circle_center.y() - y) * (circle_center.y() - y);
// To reflect the grid and be compatible with the draw_circle_arc_intersecting algorithm
// add 1/2 to the radius
return distance2 <= (radius2 + radius + 0.25);
};
auto dst_format = target()->format();
for (int i = rect.height() - 1; i >= 0; --i) {
for (int j = 0; j < rect.width(); ++j)
if (is_in_circle(j, rect.height() - i + clip_offset))
dst[j] = color_for_format(dst_format, dst[j]).blend(color).value();
dst += dst_skip;
}
}
void Painter::draw_circle_arc_intersecting(IntRect const& a_rect, IntPoint center, int radius, Color color, int thickness)
{
if (thickness <= 0 || radius <= 0)
return;
// Care about clipping
auto translated_a_rect = a_rect.translated(translation());
auto rect = translated_a_rect.intersected(clip_rect());
if (rect.is_empty())
return;
VERIFY(m_target->rect().contains(rect));
// We got cut on the top!
// FIXME: Also account for clipping on the x-axis
int clip_offset = 0;
if (translated_a_rect.y() < rect.y())
clip_offset = rect.y() - translated_a_rect.y();
if (thickness > radius)
thickness = radius;
int radius2 = radius * radius;
auto is_on_arc = [&](int x, int y) {
int distance2 = (center.x() - x) * (center.x() - x) + (center.y() - y) * (center.y() - y);
// Is within a circle of radius 1/2 around (x,y), so basically within the current pixel.
// Technically this is angle-dependent and should be between 1/2 and sqrt(2)/2, but this works.
return distance2 <= (radius2 + radius + 0.25) && distance2 >= (radius2 - radius + 0.25);
};
ARGB32* dst = m_target->scanline(rect.top()) + rect.left();
auto dst_format = target()->format();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
for (int i = rect.height() - 1; i >= 0; --i) {
for (int j = 0; j < rect.width(); ++j)
if (is_on_arc(j, rect.height() - i + clip_offset))
dst[j] = color_for_format(dst_format, dst[j]).blend(color).value();
dst += dst_skip;
}
return draw_circle_arc_intersecting(a_rect, center, radius - 1, color, thickness - 1);
}
// The callback will only be called for a quarter of the ellipse, the user is intended to deduce other points.
// As the coordinate space is relative to the center of the rectangle, it's simply (x, y), (x, -y), (-x, y) and (-x, -y).
static void on_each_ellipse_point(IntRect const& rect, Function<void(IntPoint)>&& callback)
{
// Note: This is an implementation of the Midpoint Ellipse Algorithm.
double const a = rect.width() / 2;
double const a_square = a * a;
double const b = rect.height() / 2;
double const b_square = b * b;
int x = 0;
auto y = static_cast<int>(b);
double dx = 2 * b_square * x;
double dy = 2 * a_square * y;
// For region 1:
auto decision_parameter = b_square - a_square * b + .25 * a_square;
while (dx < dy) {
callback({ x, y });
if (decision_parameter >= 0) {
y--;
dy -= 2 * a_square;
decision_parameter -= dy;
}
x++;
dx += 2 * b_square;
decision_parameter += dx + b_square;
}
// For region 2:
decision_parameter = b_square * ((x + 0.5) * (x + 0.5)) + a_square * ((y - 1) * (y - 1)) - a_square * b_square;
while (y >= 0) {
callback({ x, y });
if (decision_parameter <= 0) {
x++;
dx += 2 * b_square;
decision_parameter += dx;
}
y--;
dy -= 2 * a_square;
decision_parameter += a_square - dy;
}
}
void Painter::fill_ellipse(IntRect const& a_rect, Color color)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
VERIFY(m_target->rect().contains(rect));
auto const center = a_rect.center();
on_each_ellipse_point(rect, [this, &color, center](IntPoint position) {
IntPoint const directions[4] = { { position.x(), position.y() }, { -position.x(), position.y() }, { position.x(), -position.y() }, { -position.x(), -position.y() } };
draw_line(center + directions[0], center + directions[1], color);
draw_line(center + directions[2], center + directions[3], color);
});
}
void Painter::draw_ellipse_intersecting(IntRect const& rect, Color color, int thickness)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
if (thickness <= 0)
return;
auto const center = rect.center();
on_each_ellipse_point(rect, [this, &color, thickness, center](IntPoint position) {
IntPoint const directions[4] = { { position.x(), position.y() }, { position.x(), -position.y() }, { -position.x(), position.y() }, { -position.x(), -position.y() } };
for (auto const delta : directions) {
auto const point = center + delta;
draw_line(point, point, color, thickness);
}
});
}
template<typename RectType, typename Callback>
static void for_each_pixel_around_rect_clockwise(RectType const& rect, Callback callback)
{
if (rect.is_empty())
return;
for (auto x = rect.left(); x < rect.right(); ++x)
callback(x, rect.top());
for (auto y = rect.top() + 1; y < rect.bottom(); ++y)
callback(rect.right() - 1, y);
for (auto x = rect.right() - 2; x >= rect.left(); --x)
callback(x, rect.bottom() - 1);
for (auto y = rect.bottom() - 2; y > rect.top(); --y)
callback(rect.left(), y);
}
void Painter::draw_focus_rect(IntRect const& rect, Color color)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
if (rect.is_empty())
return;
bool state = false;
for_each_pixel_around_rect_clockwise(rect, [&](auto x, auto y) {
if (state)
set_pixel(x, y, color);
state = !state;
});
}
void Painter::draw_rect(IntRect const& a_rect, Color color, bool rough)
{
IntRect rect = a_rect.translated(translation());
auto clipped_rect = rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
int min_y = clipped_rect.top();
int max_y = clipped_rect.bottom() - 1;
int scale = this->scale();
if (rect.top() >= clipped_rect.top() && rect.top() < clipped_rect.bottom()) {
int width = rough ? max(0, min(rect.width() - 2, clipped_rect.width())) : clipped_rect.width();
if (width > 0) {
int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x();
for (int i = 0; i < scale; ++i)
fill_physical_scanline_with_draw_op(rect.top() * scale + i, start_x * scale, width * scale, color);
}
++min_y;
}
if (rect.bottom() > clipped_rect.top() && rect.bottom() <= clipped_rect.bottom()) {
int width = rough ? max(0, min(rect.width() - 2, clipped_rect.width())) : clipped_rect.width();
if (width > 0) {
int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x();
for (int i = 0; i < scale; ++i)
fill_physical_scanline_with_draw_op(max_y * scale + i, start_x * scale, width * scale, color);
}
--max_y;
}
bool draw_left_side = rect.left() >= clipped_rect.left();
bool draw_right_side = rect.right() == clipped_rect.right();
if (draw_left_side && draw_right_side) {
// Specialized loop when drawing both sides.
for (int y = min_y * scale; y <= max_y * scale; ++y) {
auto* bits = m_target->scanline(y);
for (int i = 0; i < scale; ++i)
set_physical_pixel_with_draw_op(bits[rect.left() * scale + i], color);
for (int i = 0; i < scale; ++i)
set_physical_pixel_with_draw_op(bits[(rect.right() - 1) * scale + i], color);
}
} else {
for (int y = min_y * scale; y <= max_y * scale; ++y) {
auto* bits = m_target->scanline(y);
if (draw_left_side)
for (int i = 0; i < scale; ++i)
set_physical_pixel_with_draw_op(bits[rect.left() * scale + i], color);
if (draw_right_side)
for (int i = 0; i < scale; ++i)
set_physical_pixel_with_draw_op(bits[(rect.right() - 1) * scale + i], color);
}
}
}
void Painter::draw_rect_with_thickness(IntRect const& rect, Color color, int thickness)
{
if (thickness <= 0)
return;
IntPoint p1 = rect.location();
IntPoint p2 = { rect.location().x() + rect.width(), rect.location().y() };
IntPoint p3 = { rect.location().x() + rect.width(), rect.location().y() + rect.height() };
IntPoint p4 = { rect.location().x(), rect.location().y() + rect.height() };
draw_line(p1, p2, color, thickness);
draw_line(p2, p3, color, thickness);
draw_line(p3, p4, color, thickness);
draw_line(p4, p1, color, thickness);
}
void Painter::draw_bitmap(IntPoint p, CharacterBitmap const& bitmap, Color color)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
auto rect = IntRect(p, bitmap.size()).translated(translation());
auto clipped_rect = rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
int const first_row = clipped_rect.top() - rect.top();
int const last_row = clipped_rect.bottom() - rect.top();
int const first_column = clipped_rect.left() - rect.left();
int const last_column = clipped_rect.right() - rect.left();
ARGB32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
char const* bitmap_row = &bitmap.bits()[first_row * bitmap.width() + first_column];
size_t const bitmap_skip = bitmap.width();
for (int row = first_row; row < last_row; ++row) {
for (int j = 0; j < (last_column - first_column); ++j) {
char fc = bitmap_row[j];
if (fc == '#')
dst[j] = color.value();
}
bitmap_row += bitmap_skip;
dst += dst_skip;
}
}
void Painter::draw_bitmap(IntPoint p, GlyphBitmap const& bitmap, Color color)
{
auto dst_rect = IntRect(p, bitmap.size()).translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
int const first_row = clipped_rect.top() - dst_rect.top();
int const last_row = clipped_rect.bottom() - dst_rect.top();
int const first_column = clipped_rect.left() - dst_rect.left();
int const last_column = clipped_rect.right() - dst_rect.left();
int scale = this->scale();
ARGB32* dst = m_target->scanline(clipped_rect.y() * scale) + clipped_rect.x() * scale;
auto dst_format = target()->format();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
if (scale == 1) {
for (int row = first_row; row < last_row; ++row) {
for (int j = 0; j < (last_column - first_column); ++j) {
if (bitmap.bit_at(j + first_column, row))
dst[j] = color_for_format(dst_format, dst[j]).blend(color).value();
}
dst += dst_skip;
}
} else {
for (int row = first_row; row < last_row; ++row) {
for (int j = 0; j < (last_column - first_column); ++j) {
if (bitmap.bit_at((j + first_column), row)) {
for (int iy = 0; iy < scale; ++iy)
for (int ix = 0; ix < scale; ++ix) {
auto pixel_index = j * scale + ix + iy * dst_skip;
dst[pixel_index] = color_for_format(dst_format, dst[pixel_index]).blend(color).value();
}
}
}
dst += dst_skip * scale;
}
}
}
void Painter::draw_triangle(IntPoint offset, ReadonlySpan<IntPoint> control_points, Color color)
{
VERIFY(control_points.size() == 3);
draw_triangle(control_points[0] + offset, control_points[1] + offset, control_points[2] + offset, color);
}
void Painter::draw_triangle(IntPoint a, IntPoint b, IntPoint c, Color color)
{
IntPoint p0(to_physical(a));
IntPoint p1(to_physical(b));
IntPoint p2(to_physical(c));
// sort points from top to bottom
if (p0.y() > p1.y())
swap(p0, p1);
if (p0.y() > p2.y())
swap(p0, p2);
if (p1.y() > p2.y())
swap(p1, p2);
// return if top and bottom points are on same line
if (p0.y() == p2.y())
return;
// return if all points are on the same line vertically
if (p0.x() == p1.x() && p1.x() == p2.x())
return;
// return if top is below clip rect or bottom is above clip rect
auto clip = clip_rect();
if (p0.y() >= clip.bottom() - 1)
return;
if (p2.y() < clip.top())
return;
class BoundaryLine {
private:
IntPoint m_base {};
IntPoint m_path {};
public:
BoundaryLine(IntPoint a, IntPoint b)
{
VERIFY(a.y() <= b.y());
m_base = a;
m_path = b - a;
}
int top_y() const { return m_base.y(); }
int bottom_y() const { return m_base.y() + m_path.y(); }
bool is_vertical() const { return m_path.x() == 0; }
bool is_horizontal() const { return m_path.y() == 0; }
bool in_y_range(int y) const { return y >= top_y() && y <= bottom_y(); }
Optional<int> intersection_on_x(int y) const
{
if (!in_y_range(y))
return {};
if (is_horizontal())
return {};
if (is_vertical())
return m_base.x();
int y_diff = y - top_y();
int x_d = m_path.x() * y_diff, y_d = m_path.y();
return (x_d / y_d) + m_base.x();
}
};
BoundaryLine l0(p0, p1), l1(p0, p2), l2(p1, p2);
int rgba = color.value();
for (int y = max(p0.y(), clip.top()); y < min(p2.y() + 1, clip.bottom()); y++) {
Optional<int>
x0 = l0.intersection_on_x(y),
x1 = l1.intersection_on_x(y),
x2 = l2.intersection_on_x(y);
int result_a = 0, result_b = 0;
if (x0.has_value()) {
result_a = x0.value();
if (x1.has_value() && ((!x2.has_value()) || (result_a != x1.value()))) {
result_b = x1.value();
} else {
result_b = x2.value();
}
} else if (x1.has_value()) {
result_a = x1.value();
result_b = x2.value();
}
if (result_a > result_b)
swap(result_a, result_b);
int left_bound = result_a, right_bound = result_b;
ARGB32* scanline = m_target->scanline(y);
for (int x = max(left_bound, clip.left()); x <= min(right_bound, clip.right() - 1); x++)
scanline[x] = rgba;
}
}
struct BlitState {
enum AlphaState {
NoAlpha = 0,
SrcAlpha = 1,
DstAlpha = 2,
BothAlpha = SrcAlpha | DstAlpha
};
ARGB32 const* src;
ARGB32* dst;
size_t src_pitch;
size_t dst_pitch;
int row_count;
int column_count;
float opacity;
BitmapFormat src_format;
};
// FIXME: This is a hack to support blit_with_opacity() with RGBA8888 source.
// Ideally we'd have a more generic solution that allows any source format.
static void swap_red_and_blue_channels(Color& color)
{
u32 rgba = color.value();
u32 bgra = (rgba & 0xff00ff00)
| ((rgba & 0x000000ff) << 16)
| ((rgba & 0x00ff0000) >> 16);
color = Color::from_argb(bgra);
}
// FIXME: This function is very unoptimized.
template<BlitState::AlphaState has_alpha>
static void do_blit_with_opacity(BlitState& state)
{
for (int row = 0; row < state.row_count; ++row) {
for (int x = 0; x < state.column_count; ++x) {
Color dest_color = (has_alpha & BlitState::DstAlpha) ? Color::from_argb(state.dst[x]) : Color::from_rgb(state.dst[x]);
if constexpr (has_alpha & BlitState::SrcAlpha) {
Color src_color_with_alpha = Color::from_argb(state.src[x]);
if (state.src_format == BitmapFormat::RGBA8888)
swap_red_and_blue_channels(src_color_with_alpha);
float pixel_opacity = src_color_with_alpha.alpha() / 255.0;
src_color_with_alpha.set_alpha(255 * (state.opacity * pixel_opacity));
state.dst[x] = dest_color.blend(src_color_with_alpha).value();
} else {
Color src_color_with_alpha = Color::from_rgb(state.src[x]);
if (state.src_format == BitmapFormat::RGBA8888)
swap_red_and_blue_channels(src_color_with_alpha);
src_color_with_alpha.set_alpha(state.opacity * 255);
state.dst[x] = dest_color.blend(src_color_with_alpha).value();
}
}
state.dst += state.dst_pitch;
state.src += state.src_pitch;
}
}
void Painter::blit_with_opacity(IntPoint position, Gfx::Bitmap const& source, IntRect const& a_src_rect, float opacity, bool apply_alpha)
{
VERIFY(scale() >= source.scale() && "painter doesn't support downsampling scale factors");
if (opacity >= 1.0f && !(source.has_alpha_channel() && apply_alpha))
return blit(position, source, a_src_rect);
IntRect safe_src_rect = IntRect::intersection(a_src_rect, source.rect());
if (scale() != source.scale())
return draw_scaled_bitmap({ position, safe_src_rect.size() }, source, safe_src_rect, opacity);
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
int scale = this->scale();
auto src_rect = a_src_rect * scale;
clipped_rect *= scale;
dst_rect *= scale;
int const first_row = clipped_rect.top() - dst_rect.top();
int const last_row = clipped_rect.bottom() - dst_rect.top();
int const first_column = clipped_rect.left() - dst_rect.left();
int const last_column = clipped_rect.right() - dst_rect.left();
BlitState blit_state {
.src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column,
.dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(),
.src_pitch = source.pitch() / sizeof(ARGB32),
.dst_pitch = m_target->pitch() / sizeof(ARGB32),
.row_count = last_row - first_row,
.column_count = last_column - first_column,
.opacity = opacity,
.src_format = source.format(),
};
if (source.has_alpha_channel() && apply_alpha) {
if (m_target->has_alpha_channel())
do_blit_with_opacity<BlitState::BothAlpha>(blit_state);
else
do_blit_with_opacity<BlitState::SrcAlpha>(blit_state);
} else {
if (m_target->has_alpha_channel())
do_blit_with_opacity<BlitState::DstAlpha>(blit_state);
else
do_blit_with_opacity<BlitState::NoAlpha>(blit_state);
}
}
void Painter::blit_filtered(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect, Function<Color(Color)> const& filter, bool apply_alpha)
{
VERIFY((source.scale() == 1 || source.scale() == scale()) && "blit_filtered only supports integer upsampling");
IntRect safe_src_rect = src_rect.intersected(source.rect());
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
int scale = this->scale();
clipped_rect *= scale;
dst_rect *= scale;
safe_src_rect *= source.scale();
int const first_row = clipped_rect.top() - dst_rect.top();
int const last_row = clipped_rect.bottom() - dst_rect.top();
int const first_column = clipped_rect.left() - dst_rect.left();
int const last_column = clipped_rect.right() - dst_rect.left();
ARGB32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
auto dst_format = target()->format();
auto src_format = source.format();
int s = scale / source.scale();
if (s == 1) {
ARGB32 const* src = source.scanline(safe_src_rect.top() + first_row) + safe_src_rect.left() + first_column;
size_t const src_skip = source.pitch() / sizeof(ARGB32);
for (int row = first_row; row < last_row; ++row) {
for (int x = 0; x < (last_column - first_column); ++x) {
auto source_color = color_for_format(src_format, src[x]);
if (source_color.alpha() == 0)
continue;
auto filtered_color = filter(source_color);
if (!apply_alpha || filtered_color.alpha() == 0xff)
dst[x] = filtered_color.value();
else
dst[x] = color_for_format(dst_format, dst[x]).blend(filtered_color).value();
}
dst += dst_skip;
src += src_skip;
}
} else {
for (int row = first_row; row < last_row; ++row) {
ARGB32 const* src = source.scanline(safe_src_rect.top() + row / s) + safe_src_rect.left() + first_column / s;
for (int x = 0; x < (last_column - first_column); ++x) {
auto source_color = color_for_format(src_format, src[x / s]);
if (source_color.alpha() == 0)
continue;
auto filtered_color = filter(source_color);
if (!apply_alpha || filtered_color.alpha() == 0xff)
dst[x] = filtered_color.value();
else
dst[x] = color_for_format(dst_format, dst[x]).blend(filtered_color).value();
}
dst += dst_skip;
}
}
}
void Painter::blit_brightened(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect)
{
return blit_filtered(position, source, src_rect, [](Color src) {
return src.lightened();
});
}
void Painter::blit_dimmed(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect)
{
return blit_filtered(position, source, src_rect, [](Color src) {
return src.to_grayscale().lightened();
});
}
void Painter::draw_tiled_bitmap(IntRect const& a_dst_rect, Gfx::Bitmap const& source)
{
VERIFY((source.scale() == 1 || source.scale() == scale()) && "draw_tiled_bitmap only supports integer upsampling");
auto dst_rect = a_dst_rect.translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
int scale = this->scale();
clipped_rect *= scale;
dst_rect *= scale;
int const first_row = clipped_rect.top() - dst_rect.top();
int const last_row = clipped_rect.bottom() - dst_rect.top();
int const first_column = clipped_rect.left() - dst_rect.left();
ARGB32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
if (source.format() == BitmapFormat::BGRx8888 || source.format() == BitmapFormat::BGRA8888) {
int s = scale / source.scale();
if (s == 1) {
int x_start = first_column + a_dst_rect.left() * scale;
for (int row = first_row; row < last_row; ++row) {
ARGB32 const* sl = source.scanline((row + a_dst_rect.top() * scale) % source.physical_height());
for (int x = x_start; x < clipped_rect.width() + x_start; ++x)
dst[x - x_start] = sl[x % source.physical_width()];
dst += dst_skip;
}
} else {
int x_start = first_column + a_dst_rect.left() * scale;
for (int row = first_row; row < last_row; ++row) {
ARGB32 const* sl = source.scanline(((row + a_dst_rect.top() * scale) / s) % source.physical_height());
for (int x = x_start; x < clipped_rect.width() + x_start; ++x)
dst[x - x_start] = sl[(x / s) % source.physical_width()];
dst += dst_skip;
}
}
return;
}
VERIFY_NOT_REACHED();
}
void Painter::blit_offset(IntPoint a_position, Gfx::Bitmap const& source, IntRect const& a_src_rect, IntPoint offset)
{
auto src_rect = IntRect { a_src_rect.location() - offset, a_src_rect.size() };
auto position = a_position;
if (src_rect.x() < 0) {
position.set_x(position.x() - src_rect.x());
src_rect.set_x(0);
}
if (src_rect.y() < 0) {
position.set_y(position.y() - src_rect.y());
src_rect.set_y(0);
}
blit(position, source, src_rect);
}
void Painter::blit(IntPoint position, Gfx::Bitmap const& source, IntRect const& a_src_rect, float opacity, bool apply_alpha)
{
VERIFY(scale() >= source.scale() && "painter doesn't support downsampling scale factors");
if (opacity < 1.0f || (source.has_alpha_channel() && apply_alpha))
return blit_with_opacity(position, source, a_src_rect, opacity, apply_alpha);
auto safe_src_rect = a_src_rect.intersected(source.rect());
if (scale() != source.scale())
return draw_scaled_bitmap({ position, safe_src_rect.size() }, source, safe_src_rect, opacity);
// If we get here, the Painter might have a scale factor, but the source bitmap has the same scale factor.
// We need to transform from logical to physical coordinates, but we can just copy pixels without resampling.
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
// All computations below are in physical coordinates.
int scale = this->scale();
auto src_rect = a_src_rect * scale;
clipped_rect *= scale;
dst_rect *= scale;
int const first_row = clipped_rect.top() - dst_rect.top();
int const last_row = clipped_rect.bottom() - dst_rect.top();
int const first_column = clipped_rect.left() - dst_rect.left();
ARGB32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
size_t const dst_skip = m_target->pitch() / sizeof(ARGB32);
if (source.format() == BitmapFormat::BGRx8888 || source.format() == BitmapFormat::BGRA8888) {
ARGB32 const* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column;
size_t const src_skip = source.pitch() / sizeof(ARGB32);
for (int row = first_row; row < last_row; ++row) {
memcpy(dst, src, sizeof(ARGB32) * clipped_rect.width());
dst += dst_skip;
src += src_skip;
}
return;
}
if (source.format() == BitmapFormat::RGBA8888) {
u32 const* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column;
size_t const src_skip = source.pitch() / sizeof(u32);
for (int row = first_row; row < last_row; ++row) {
for (int i = 0; i < clipped_rect.width(); ++i) {
u32 rgba = src[i];
u32 bgra = (rgba & 0xff00ff00)
| ((rgba & 0x000000ff) << 16)
| ((rgba & 0x00ff0000) >> 16);
dst[i] = bgra;
}
dst += dst_skip;
src += src_skip;
}
return;
}
VERIFY_NOT_REACHED();
}
template<bool has_alpha_channel, typename GetPixel>
ALWAYS_INLINE static void do_draw_integer_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& src_rect, Gfx::Bitmap const& source, int hfactor, int vfactor, GetPixel get_pixel, float opacity)
{
bool has_opacity = opacity != 1.0f;
for (int y = 0; y < src_rect.height(); ++y) {
int dst_y = dst_rect.y() + y * vfactor;
for (int x = 0; x < src_rect.width(); ++x) {
auto src_pixel = get_pixel(source, x + src_rect.left(), y + src_rect.top());
if (has_opacity)
src_pixel.set_alpha(src_pixel.alpha() * opacity);
for (int yo = 0; yo < vfactor; ++yo) {
auto* scanline = (Color*)target.scanline(dst_y + yo);
int dst_x = dst_rect.x() + x * hfactor;
for (int xo = 0; xo < hfactor; ++xo) {
if constexpr (has_alpha_channel)
scanline[dst_x + xo] = scanline[dst_x + xo].blend(src_pixel);
else
scanline[dst_x + xo] = src_pixel;
}
}
}
}
}
template<bool has_alpha_channel, typename GetPixel>
ALWAYS_INLINE static void do_draw_box_sampled_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity)
{
float source_pixel_width = src_rect.width() / dst_rect.width();
float source_pixel_height = src_rect.height() / dst_rect.height();
float source_pixel_area = source_pixel_width * source_pixel_height;
FloatRect const pixel_box = { 0.f, 0.f, 1.f, 1.f };
for (int y = clipped_rect.top(); y < clipped_rect.bottom(); ++y) {
auto* scanline = reinterpret_cast<Color*>(target.scanline(y));
for (int x = clipped_rect.left(); x < clipped_rect.right(); ++x) {
// Project the destination pixel in the source image
FloatRect const source_box = {
src_rect.left() + (x - dst_rect.x()) * source_pixel_width,
src_rect.top() + (y - dst_rect.y()) * source_pixel_height,
source_pixel_width,
source_pixel_height,
};
IntRect enclosing_source_box = enclosing_int_rect(source_box).intersected(source.rect());
// Sum the contribution of all source pixels inside the projected pixel
float red_accumulator = 0.f;
float green_accumulator = 0.f;
float blue_accumulator = 0.f;
float total_area = 0.f;
for (int sy = enclosing_source_box.y(); sy < enclosing_source_box.bottom(); ++sy) {
for (int sx = enclosing_source_box.x(); sx < enclosing_source_box.right(); ++sx) {
float area = source_box.intersected(pixel_box.translated(sx, sy)).size().area();
auto pixel = get_pixel(source, sx, sy);
area *= pixel.alpha() / 255.f;
red_accumulator += pixel.red() * area;
green_accumulator += pixel.green() * area;
blue_accumulator += pixel.blue() * area;
total_area += area;
}
}
Color src_pixel = {
round_to<u8>(min(red_accumulator / total_area, 255.f)),
round_to<u8>(min(green_accumulator / total_area, 255.f)),
round_to<u8>(min(blue_accumulator / total_area, 255.f)),
round_to<u8>(min(total_area * 255.f / source_pixel_area * opacity, 255.f)),
};
if constexpr (has_alpha_channel)
scanline[x] = scanline[x].blend(src_pixel);
else
scanline[x] = src_pixel;
}
}
}
template<bool has_alpha_channel, Painter::ScalingMode scaling_mode, typename GetPixel>
ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity)
{
auto int_src_rect = enclosing_int_rect(src_rect);
auto clipped_src_rect = int_src_rect.intersected(source.rect());
if (clipped_src_rect.is_empty())
return;
if constexpr (scaling_mode == Painter::ScalingMode::NearestNeighbor || scaling_mode == Painter::ScalingMode::SmoothPixels) {
if (dst_rect == clipped_rect && int_src_rect == src_rect && !(dst_rect.width() % int_src_rect.width()) && !(dst_rect.height() % int_src_rect.height())) {
int hfactor = dst_rect.width() / int_src_rect.width();
int vfactor = dst_rect.height() / int_src_rect.height();
if (hfactor == 2 && vfactor == 2)
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, 2, 2, get_pixel, opacity);
if (hfactor == 3 && vfactor == 3)
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, 3, 3, get_pixel, opacity);
if (hfactor == 4 && vfactor == 4)
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, 4, 4, get_pixel, opacity);
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, hfactor, vfactor, get_pixel, opacity);
}
}
if constexpr (scaling_mode == Painter::ScalingMode::BoxSampling)
return do_draw_box_sampled_scaled_bitmap<has_alpha_channel>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
bool has_opacity = opacity != 1.f;
i64 shift = 1ll << 32;
i64 fractional_mask = shift - 1;
i64 bilinear_offset_x = (1ll << 31) * (src_rect.width() / dst_rect.width() - 1);
i64 bilinear_offset_y = (1ll << 31) * (src_rect.height() / dst_rect.height() - 1);
i64 hscale = src_rect.width() * shift / dst_rect.width();
i64 vscale = src_rect.height() * shift / dst_rect.height();
i64 src_left = src_rect.left() * shift;
i64 src_top = src_rect.top() * shift;
for (int y = clipped_rect.top(); y < clipped_rect.bottom(); ++y) {
auto* scanline = reinterpret_cast<Color*>(target.scanline(y));
auto desired_y = (y - dst_rect.y()) * vscale + src_top;
for (int x = clipped_rect.left(); x < clipped_rect.right(); ++x) {
auto desired_x = (x - dst_rect.x()) * hscale + src_left;
Color src_pixel;
if constexpr (scaling_mode == Painter::ScalingMode::BilinearBlend) {
auto shifted_x = desired_x + bilinear_offset_x;
auto shifted_y = desired_y + bilinear_offset_y;
auto scaled_x0 = clamp(shifted_x >> 32, clipped_src_rect.left(), clipped_src_rect.right() - 1);
auto scaled_x1 = clamp((shifted_x >> 32) + 1, clipped_src_rect.left(), clipped_src_rect.right() - 1);
auto scaled_y0 = clamp(shifted_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
auto scaled_y1 = clamp((shifted_y >> 32) + 1, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
float x_ratio = (shifted_x & fractional_mask) / static_cast<float>(shift);
float y_ratio = (shifted_y & fractional_mask) / static_cast<float>(shift);
auto top_left = get_pixel(source, scaled_x0, scaled_y0);
auto top_right = get_pixel(source, scaled_x1, scaled_y0);
auto bottom_left = get_pixel(source, scaled_x0, scaled_y1);
auto bottom_right = get_pixel(source, scaled_x1, scaled_y1);
auto top = top_left.mixed_with(top_right, x_ratio);
auto bottom = bottom_left.mixed_with(bottom_right, x_ratio);
src_pixel = top.mixed_with(bottom, y_ratio);
} else if constexpr (scaling_mode == Painter::ScalingMode::SmoothPixels) {
auto scaled_x1 = clamp(desired_x >> 32, clipped_src_rect.left(), clipped_src_rect.right() - 1);
auto scaled_x0 = clamp(scaled_x1 - 1, clipped_src_rect.left(), clipped_src_rect.right() - 1);
auto scaled_y1 = clamp(desired_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
auto scaled_y0 = clamp(scaled_y1 - 1, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
float x_ratio = (desired_x & fractional_mask) / (float)shift;
float y_ratio = (desired_y & fractional_mask) / (float)shift;
float scaled_x_ratio = clamp(x_ratio * dst_rect.width() / (float)src_rect.width(), 0.f, 1.f);
float scaled_y_ratio = clamp(y_ratio * dst_rect.height() / (float)src_rect.height(), 0.f, 1.f);
auto top_left = get_pixel(source, scaled_x0, scaled_y0);
auto top_right = get_pixel(source, scaled_x1, scaled_y0);
auto bottom_left = get_pixel(source, scaled_x0, scaled_y1);
auto bottom_right = get_pixel(source, scaled_x1, scaled_y1);
auto top = top_left.mixed_with(top_right, scaled_x_ratio);
auto bottom = bottom_left.mixed_with(bottom_right, scaled_x_ratio);
src_pixel = top.mixed_with(bottom, scaled_y_ratio);
} else {
auto scaled_x = clamp(desired_x >> 32, clipped_src_rect.left(), clipped_src_rect.right() - 1);
auto scaled_y = clamp(desired_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
src_pixel = get_pixel(source, scaled_x, scaled_y);
}
if (has_opacity)
src_pixel.set_alpha(src_pixel.alpha() * opacity);
if constexpr (has_alpha_channel)
scanline[x] = scanline[x].blend(src_pixel);
else
scanline[x] = src_pixel;
}
}
}
template<bool has_alpha_channel, typename GetPixel>
ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity, Painter::ScalingMode scaling_mode)
{
switch (scaling_mode) {
case Painter::ScalingMode::NearestNeighbor:
do_draw_scaled_bitmap<has_alpha_channel, Painter::ScalingMode::NearestNeighbor>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
break;
case Painter::ScalingMode::SmoothPixels:
do_draw_scaled_bitmap<has_alpha_channel, Painter::ScalingMode::SmoothPixels>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
break;
case Painter::ScalingMode::BilinearBlend:
do_draw_scaled_bitmap<has_alpha_channel, Painter::ScalingMode::BilinearBlend>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
break;
case Painter::ScalingMode::BoxSampling:
do_draw_scaled_bitmap<has_alpha_channel, Painter::ScalingMode::BoxSampling>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
break;
case Painter::ScalingMode::None:
do_draw_scaled_bitmap<has_alpha_channel, Painter::ScalingMode::None>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
break;
}
}
void Painter::draw_scaled_bitmap(IntRect const& a_dst_rect, Gfx::Bitmap const& source, IntRect const& a_src_rect, float opacity, ScalingMode scaling_mode)
{
draw_scaled_bitmap(a_dst_rect, source, FloatRect { a_src_rect }, opacity, scaling_mode);
}
void Painter::draw_scaled_bitmap(IntRect const& a_dst_rect, Gfx::Bitmap const& source, FloatRect const& a_src_rect, float opacity, ScalingMode scaling_mode)
{
IntRect int_src_rect = enclosing_int_rect(a_src_rect);
if (scale() == source.scale() && a_src_rect == int_src_rect && a_dst_rect.size() == int_src_rect.size())
return blit(a_dst_rect.location(), source, int_src_rect, opacity);
if (scaling_mode == ScalingMode::None) {
IntRect clipped_draw_rect { (int)a_src_rect.location().x(), (int)a_src_rect.location().y(), a_dst_rect.size().width(), a_dst_rect.size().height() };
return blit(a_dst_rect.location(), source, clipped_draw_rect, opacity);
}
auto dst_rect = to_physical(a_dst_rect);
auto src_rect = a_src_rect * source.scale();
auto clipped_rect = dst_rect.intersected(clip_rect() * scale());
if (clipped_rect.is_empty())
return;
if (source.has_alpha_channel() || opacity != 1.0f) {
switch (source.format()) {
case BitmapFormat::BGRx8888:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::BGRx8888>, opacity, scaling_mode);
break;
case BitmapFormat::BGRA8888:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::BGRA8888>, opacity, scaling_mode);
break;
default:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::Invalid>, opacity, scaling_mode);
break;
}
} else {
switch (source.format()) {
case BitmapFormat::BGRx8888:
do_draw_scaled_bitmap<false>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::BGRx8888>, opacity, scaling_mode);
break;
default:
do_draw_scaled_bitmap<false>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::Invalid>, opacity, scaling_mode);
break;
}
}
}
ALWAYS_INLINE void Painter::draw_glyph(FloatPoint point, u32 code_point, Color color)
{
draw_glyph(point, code_point, font(), color);
}
FLATTEN void Painter::draw_glyph(FloatPoint point, u32 code_point, Font const& font, Color color)
{
auto top_left = point + FloatPoint(font.glyph_left_bearing(code_point), 0);
auto glyph_position = Gfx::GlyphRasterPosition::get_nearest_fit_for(top_left);
auto glyph = font.glyph(code_point, glyph_position.subpixel_offset);
if (glyph.is_glyph_bitmap()) {
draw_bitmap(top_left.to_type<int>(), glyph.glyph_bitmap(), color);
} else if (glyph.is_color_bitmap()) {
float scaled_width = glyph.advance();
float ratio = static_cast<float>(glyph.bitmap()->height()) / static_cast<float>(glyph.bitmap()->width());
float scaled_height = scaled_width * ratio;
FloatRect rect(point.x(), point.y(), scaled_width, scaled_height);
draw_scaled_bitmap(rect.to_rounded<int>(), *glyph.bitmap(), glyph.bitmap()->rect(), 1.0f, ScalingMode::BilinearBlend);
} else if (color.alpha() != 255) {
blit_filtered(glyph_position.blit_position, *glyph.bitmap(), glyph.bitmap()->rect(), [color](Color pixel) -> Color {
return pixel.multiply(color);
});
} else {
blit_filtered(glyph_position.blit_position, *glyph.bitmap(), glyph.bitmap()->rect(), [color](Color pixel) -> Color {
return color.with_alpha(pixel.alpha());
});
}
}
void Painter::draw_emoji(IntPoint point, Gfx::Bitmap const& emoji, Font const& font)
{
IntRect dst_rect {
point.x(),
point.y(),
font.pixel_size_rounded_up() * emoji.width() / emoji.height(),
font.pixel_size_rounded_up(),
};
draw_scaled_bitmap(dst_rect, emoji, emoji.rect());
}
void Painter::draw_glyph_or_emoji(FloatPoint point, u32 code_point, Font const& font, Color color)
{
StringBuilder builder;
builder.append_code_point(code_point);
auto it = Utf8View { builder.string_view() }.begin();
return draw_glyph_or_emoji(point, it, font, color);
}
void Painter::draw_glyph_or_emoji(FloatPoint point, Utf8CodePointIterator& it, Font const& font, Color color)
{
auto draw_glyph_or_emoji = prepare_draw_glyph_or_emoji(point, it, font);
if (draw_glyph_or_emoji.has<DrawGlyph>()) {
auto& glyph = draw_glyph_or_emoji.get<DrawGlyph>();
draw_glyph(glyph.position, glyph.code_point, *glyph.font, color);
} else {
auto& emoji = draw_glyph_or_emoji.get<DrawEmoji>();
draw_emoji(emoji.position.to_type<int>(), *emoji.emoji, *emoji.font);
}
}
void Painter::draw_glyph(IntPoint point, u32 code_point, Color color)
{
draw_glyph(point.to_type<float>(), code_point, font(), color);
}
void Painter::draw_glyph(IntPoint point, u32 code_point, Font const& font, Color color)
{
draw_glyph(point.to_type<float>(), code_point, font, color);
}
void Painter::draw_glyph_or_emoji(IntPoint point, u32 code_point, Font const& font, Color color)
{
draw_glyph_or_emoji(point.to_type<float>(), code_point, font, color);
}
void Painter::draw_glyph_or_emoji(IntPoint point, Utf8CodePointIterator& it, Font const& font, Color color)
{
draw_glyph_or_emoji(point.to_type<float>(), it, font, color);
}
template<typename DrawGlyphFunction>
void draw_text_line(FloatRect const& a_rect, Utf8View const& text, Font const& font, TextAlignment alignment, TextDirection direction, DrawGlyphFunction draw_glyph)
{
auto rect = a_rect;
switch (alignment) {
case TextAlignment::TopLeft:
case TextAlignment::CenterLeft:
case TextAlignment::BottomLeft:
break;
case TextAlignment::TopRight:
case TextAlignment::CenterRight:
case TextAlignment::BottomRight:
rect.set_x(rect.right() - 1 - font.width(text));
break;
case TextAlignment::TopCenter:
case TextAlignment::BottomCenter:
case TextAlignment::Center: {
auto shrunken_rect = rect;
shrunken_rect.set_width(font.width(text));
shrunken_rect.center_within(rect);
rect = shrunken_rect;
break;
}
default:
VERIFY_NOT_REACHED();
}
auto point = rect.location();
auto space_width = font.glyph_width(' ') + font.glyph_spacing();
if (direction == TextDirection::RTL) {
point.translate_by(rect.width(), 0); // Start drawing from the end
space_width = -space_width; // Draw spaces backwards
}
u32 last_code_point { 0 };
for (auto it = text.begin(); it != text.end(); ++it) {
auto code_point = *it;
if (should_paint_as_space(code_point)) {
point.translate_by(space_width, 0);
last_code_point = code_point;
continue;
}
auto kerning = font.glyphs_horizontal_kerning(last_code_point, code_point);
if (kerning != 0.0f)
point.translate_by(direction == TextDirection::LTR ? kerning : -kerning, 0);
auto it_copy = it; // The callback function will advance the iterator, so create a copy for this lookup.
FloatSize glyph_size(font.glyph_or_emoji_width(it_copy) + font.glyph_spacing(), font.pixel_size());
if (direction == TextDirection::RTL)
point.translate_by(-glyph_size.width(), 0); // If we are drawing right to left, we have to move backwards before drawing the glyph
draw_glyph({ point, glyph_size }, it);
if (direction == TextDirection::LTR)
point.translate_by(glyph_size.width(), 0);
// The callback function might have exhausted the iterator.
if (it == text.end())
break;
last_code_point = code_point;
}
}
static inline size_t draw_text_get_length(Utf8View const& text)
{
return text.byte_length();
}
Vector<DirectionalRun> Painter::split_text_into_directional_runs(Utf8View const& text, TextDirection initial_direction)
{
// FIXME: This is a *very* simplified version of the UNICODE BIDIRECTIONAL ALGORITHM (https://www.unicode.org/reports/tr9/), that can render most bidirectional text
// but also produces awkward results in a large amount of edge cases. This should probably be replaced with a fully spec compliant implementation at some point.
// FIXME: Support HTML "dir" attribute (how?)
u8 paragraph_embedding_level = initial_direction == TextDirection::LTR ? 0 : 1;
Vector<u8> embedding_levels;
embedding_levels.ensure_capacity(text.length());
for (size_t i = 0; i < text.length(); i++)
embedding_levels.unchecked_append(paragraph_embedding_level);
// FIXME: Support Explicit Directional Formatting Characters
Vector<BidirectionalClass> character_classes;
character_classes.ensure_capacity(text.length());
for (u32 code_point : text)
character_classes.unchecked_append(get_char_bidi_class(code_point));
// resolving weak types
BidirectionalClass paragraph_class = initial_direction == TextDirection::LTR ? BidirectionalClass::STRONG_LTR : BidirectionalClass::STRONG_RTL;
for (size_t i = 0; i < character_classes.size(); i++) {
if (character_classes[i] != BidirectionalClass::WEAK_SEPARATORS)
continue;
for (ssize_t j = i - 1; j >= 0; j--) {
auto character_class = character_classes[j];
if (character_class != BidirectionalClass::STRONG_RTL && character_class != BidirectionalClass::STRONG_LTR)
continue;
character_classes[i] = character_class;
break;
}
if (character_classes[i] == BidirectionalClass::WEAK_SEPARATORS)
character_classes[i] = paragraph_class;
}
// resolving neutral types
auto left_side = BidirectionalClass::NEUTRAL;
auto sequence_length = 0;
for (size_t i = 0; i < character_classes.size(); i++) {
auto character_class = character_classes[i];
if (left_side == BidirectionalClass::NEUTRAL) {
if (character_class != BidirectionalClass::NEUTRAL)
left_side = character_class;
else
character_classes[i] = paragraph_class;
continue;
}
if (character_class != BidirectionalClass::NEUTRAL) {
BidirectionalClass sequence_class;
if (bidi_class_to_direction(left_side) == bidi_class_to_direction(character_class)) {
sequence_class = left_side == BidirectionalClass::STRONG_RTL ? BidirectionalClass::STRONG_RTL : BidirectionalClass::STRONG_LTR;
} else {
sequence_class = paragraph_class;
}
for (auto j = 0; j < sequence_length; j++) {
character_classes[i - j - 1] = sequence_class;
}
sequence_length = 0;
left_side = character_class;
} else {
sequence_length++;
}
}
for (auto i = 0; i < sequence_length; i++)
character_classes[character_classes.size() - i - 1] = paragraph_class;
// resolving implicit levels
for (size_t i = 0; i < character_classes.size(); i++) {
auto character_class = character_classes[i];
if ((embedding_levels[i] % 2) == 0) {
if (character_class == BidirectionalClass::STRONG_RTL)
embedding_levels[i] += 1;
else if (character_class == BidirectionalClass::WEAK_NUMBERS || character_class == BidirectionalClass::WEAK_SEPARATORS)
embedding_levels[i] += 2;
} else {
if (character_class == BidirectionalClass::STRONG_LTR || character_class == BidirectionalClass::WEAK_NUMBERS || character_class == BidirectionalClass::WEAK_SEPARATORS)
embedding_levels[i] += 1;
}
}
// splitting into runs
auto run_code_points_start = text.begin();
auto next_code_points_slice = [&](auto length) {
Vector<u32> run_code_points;
run_code_points.ensure_capacity(length);
for (size_t j = 0; j < length; ++j, ++run_code_points_start)
run_code_points.unchecked_append(*run_code_points_start);
return run_code_points;
};
Vector<DirectionalRun> runs;
size_t start = 0;
u8 level = embedding_levels[0];
for (size_t i = 1; i < embedding_levels.size(); ++i) {
if (embedding_levels[i] == level)
continue;
auto code_points_slice = next_code_points_slice(i - start);
runs.append({ move(code_points_slice), level });
start = i;
level = embedding_levels[i];
}
auto code_points_slice = next_code_points_slice(embedding_levels.size() - start);
runs.append({ move(code_points_slice), level });
// reordering resolved levels
// FIXME: missing special cases for trailing whitespace characters
u8 minimum_level = 128;
u8 maximum_level = 0;
for (auto& run : runs) {
minimum_level = min(minimum_level, run.embedding_level());
maximum_level = max(minimum_level, run.embedding_level());
}
if ((minimum_level % 2) == 0)
minimum_level++;
auto runs_count = runs.size() - 1;
while (maximum_level <= minimum_level) {
size_t run_index = 0;
while (run_index < runs_count) {
while (run_index < runs_count && runs[run_index].embedding_level() < maximum_level)
run_index++;
auto reverse_start = run_index;
while (run_index <= runs_count && runs[run_index].embedding_level() >= maximum_level)
run_index++;
auto reverse_end = run_index - 1;
while (reverse_start < reverse_end) {
swap(runs[reverse_start], runs[reverse_end]);
reverse_start++;
reverse_end--;
}
}
maximum_level--;
}
// mirroring RTL mirror characters
for (auto& run : runs) {
if (run.direction() == TextDirection::LTR)
continue;
for (auto& code_point : run.code_points()) {
code_point = get_mirror_char(code_point);
}
}
return runs;
}
bool Painter::text_contains_bidirectional_text(Utf8View const& text, TextDirection initial_direction)
{
for (u32 code_point : text) {
auto char_class = get_char_bidi_class(code_point);
if (char_class == BidirectionalClass::NEUTRAL)
continue;
if (bidi_class_to_direction(char_class) != initial_direction)
return true;
}
return false;
}
template<typename DrawGlyphFunction>
void Painter::do_draw_text(FloatRect const& rect, Utf8View const& text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping, DrawGlyphFunction draw_glyph)
{
if (draw_text_get_length(text) == 0)
return;
TextLayout layout(font, text, rect);
auto line_height = font.preferred_line_height();
auto lines = layout.lines(elision, wrapping);
auto bounding_rect = layout.bounding_rect(wrapping);
bounding_rect.align_within(rect, alignment);
for (size_t i = 0; i < lines.size(); ++i) {
auto line = Utf8View { lines[i] };
FloatRect line_rect { bounding_rect.x(), bounding_rect.y() + i * line_height, bounding_rect.width(), line_height };
TextDirection line_direction = get_text_direction(line);
if (text_contains_bidirectional_text(line, line_direction)) { // Slow Path: The line contains mixed BiDi classes
auto directional_runs = split_text_into_directional_runs(line, line_direction);
auto current_dx = line_direction == TextDirection::LTR ? 0 : line_rect.width();
for (auto& directional_run : directional_runs) {
auto run_width = font.width(directional_run.text());
if (line_direction == TextDirection::RTL)
current_dx -= run_width;
auto run_rect = line_rect.translated(current_dx, 0);
run_rect.set_width(run_width);
// NOTE: DirectionalRun returns Utf32View which isn't
// compatible with draw_text_line.
StringBuilder builder;
builder.append(directional_run.text());
auto line_text = Utf8View { builder.string_view() };
draw_text_line(run_rect, line_text, font, alignment, directional_run.direction(), draw_glyph);
if (line_direction == TextDirection::LTR)
current_dx += run_width;
}
} else {
draw_text_line(line_rect, line, font, alignment, line_direction, draw_glyph);
}
}
}
void Painter::draw_text(FloatRect const& rect, StringView text, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping)
{
draw_text(rect, text, font(), alignment, color, elision, wrapping);
}
void Painter::draw_text(FloatRect const& rect, Utf32View const& text, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping)
{
draw_text(rect, text, font(), alignment, color, elision, wrapping);
}
void Painter::draw_text(FloatRect const& rect, StringView raw_text, Font const& font, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping)
{
Utf8View text { raw_text };
do_draw_text(rect, text, font, alignment, elision, wrapping, [&](FloatRect const& r, Utf8CodePointIterator& it) {
draw_glyph_or_emoji(r.location(), it, font, color);
});
}
void Painter::draw_text(FloatRect const& rect, Utf32View const& raw_text, Font const& font, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping)
{
// FIXME: UTF-32 should eventually be completely removed, but for the time
// being some places might depend on it, so we do some internal conversion.
StringBuilder builder;
builder.append(raw_text);
auto text = Utf8View { builder.string_view() };
do_draw_text(rect, text, font, alignment, elision, wrapping, [&](FloatRect const& r, Utf8CodePointIterator& it) {
draw_glyph_or_emoji(r.location(), it, font, color);
});
}
void Painter::draw_text(Function<void(FloatRect const&, Utf8CodePointIterator&)> draw_one_glyph, FloatRect const& rect, Utf8View const& text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
do_draw_text(rect, text, font, alignment, elision, wrapping, [&](FloatRect const& r, Utf8CodePointIterator& it) {
draw_one_glyph(r, it);
});
}
void Painter::draw_text(Function<void(FloatRect const&, Utf8CodePointIterator&)> draw_one_glyph, FloatRect const& rect, StringView raw_text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
Utf8View text { raw_text };
do_draw_text(rect, text, font, alignment, elision, wrapping, [&](FloatRect const& r, Utf8CodePointIterator& it) {
draw_one_glyph(r, it);
});
}
void Painter::draw_text(Function<void(FloatRect const&, Utf8CodePointIterator&)> draw_one_glyph, FloatRect const& rect, Utf32View const& raw_text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
// FIXME: UTF-32 should eventually be completely removed, but for the time
// being some places might depend on it, so we do some internal conversion.
StringBuilder builder;
builder.append(raw_text);
auto text = Utf8View { builder.string_view() };
do_draw_text(rect, text, font, alignment, elision, wrapping, [&](FloatRect const& r, Utf8CodePointIterator& it) {
draw_one_glyph(r, it);
});
}
void Painter::draw_text(IntRect const& rect, StringView text, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping)
{
draw_text(rect.to_type<float>(), text, font(), alignment, color, elision, wrapping);
}
void Painter::draw_text(IntRect const& rect, Utf32View const& text, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping)
{
draw_text(rect.to_type<float>(), text, font(), alignment, color, elision, wrapping);
}
void Painter::draw_text(IntRect const& rect, StringView raw_text, Font const& font, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping)
{
draw_text(rect.to_type<float>(), raw_text, font, alignment, color, elision, wrapping);
}
void Painter::draw_text(IntRect const& rect, Utf32View const& raw_text, Font const& font, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping)
{
return draw_text(rect.to_type<float>(), raw_text, font, alignment, color, elision, wrapping);
}
void Painter::draw_text(Function<void(FloatRect const&, Utf8CodePointIterator&)> draw_one_glyph, IntRect const& rect, Utf8View const& text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping)
{
return draw_text(move(draw_one_glyph), rect.to_type<float>(), text, font, alignment, elision, wrapping);
}
void Painter::draw_text(Function<void(FloatRect const&, Utf8CodePointIterator&)> draw_one_glyph, IntRect const& rect, StringView raw_text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping)
{
return draw_text(move(draw_one_glyph), rect.to_type<float>(), raw_text, font, alignment, elision, wrapping);
}
void Painter::draw_text(Function<void(FloatRect const&, Utf8CodePointIterator&)> draw_one_glyph, IntRect const& rect, Utf32View const& raw_text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping)
{
return draw_text(move(draw_one_glyph), rect.to_type<float>(), raw_text, font, alignment, elision, wrapping);
}
void Painter::set_pixel(IntPoint p, Color color, bool blend)
{
auto point = p;
point.translate_by(state().translation);
// Use the scale only to avoid clipping pixels set in drawing functions that handle
// scaling and call set_pixel() -- do not scale the pixel.
if (!clip_rect().contains(point / scale()))
return;
set_physical_pixel(point, color, blend);
}
void Painter::set_physical_pixel(IntPoint physical_point, Color color, bool blend)
{
// This function should only be called after translation, clipping, etc has been handled elsewhere
// if not use set_pixel().
auto& dst = m_target->scanline(physical_point.y())[physical_point.x()];
if (!blend || color.alpha() == 255)
dst = color.value();
else if (color.alpha())
dst = color_for_format(target()->format(), dst).blend(color).value();
}
Optional<Color> Painter::get_pixel(IntPoint p)
{
auto point = p;
point.translate_by(state().translation);
if (!clip_rect().contains(point / scale()))
return {};
return m_target->get_pixel(point);
}
ErrorOr<NonnullRefPtr<Bitmap>> Painter::get_region_bitmap(IntRect const& region, BitmapFormat format, Optional<IntRect&> actual_region)
{
VERIFY(scale() == 1);
auto bitmap_region = region.translated(state().translation).intersected(m_target->rect());
if (actual_region.has_value())
actual_region.value() = bitmap_region.translated(-state().translation);
return m_target->cropped(bitmap_region, format);
}
ALWAYS_INLINE void Painter::set_physical_pixel_with_draw_op(u32& pixel, Color color)
{
// This always sets a single physical pixel, independent of scale().
// This should only be called by routines that already handle scale.
switch (draw_op()) {
case DrawOp::Copy:
pixel = color.value();
break;
case DrawOp::Xor:
pixel = color.xored(Color::from_argb(pixel)).value();
break;
case DrawOp::Invert:
pixel = Color::from_argb(pixel).inverted().value();
break;
}
}
ALWAYS_INLINE void Painter::fill_physical_scanline_with_draw_op(int y, int x, int width, Color color)
{
// This always draws a single physical scanline, independent of scale().
// This should only be called by routines that already handle scale.
auto dst_format = m_target->format();
switch (draw_op()) {
case DrawOp::Copy:
fast_u32_fill(m_target->scanline(y) + x, color.value(), width);
break;
case DrawOp::Xor: {
auto* pixel = m_target->scanline(y) + x;
auto* end = pixel + width;
while (pixel < end) {
*pixel = color_for_format(dst_format, *pixel).xored(color).value();
pixel++;
}
break;
}
case DrawOp::Invert: {
auto* pixel = m_target->scanline(y) + x;
auto* end = pixel + width;
while (pixel < end) {
*pixel = color_for_format(dst_format, *pixel).inverted().value();
pixel++;
}
break;
}
}
}
void Painter::draw_physical_pixel(IntPoint physical_position, Color color, int thickness)
{
// This always draws a single physical pixel, independent of scale().
// This should only be called by routines that already handle scale
// (including scaling thickness).
VERIFY(draw_op() == DrawOp::Copy);
if (thickness <= 0)
return;
if (thickness == 1) { // Implies scale() == 1.
auto& pixel = m_target->scanline(physical_position.y())[physical_position.x()];
return set_physical_pixel_with_draw_op(pixel, color_for_format(m_target->format(), pixel).blend(color));
}
IntRect rect { physical_position, { thickness, thickness } };
rect.intersect(clip_rect() * scale());
fill_physical_rect(rect, color);
}
void Painter::draw_line(IntPoint a_p1, IntPoint a_p2, Color color, int thickness, LineStyle style, Color alternate_color)
{
if (clip_rect().is_empty())
return;
if (thickness <= 0)
return;
if (color.alpha() == 0)
return;
auto clip_rect = this->clip_rect() * scale();
auto const p1 = thickness > 1 ? a_p1.translated(-(thickness / 2), -(thickness / 2)) : a_p1;
auto const p2 = thickness > 1 ? a_p2.translated(-(thickness / 2), -(thickness / 2)) : a_p2;
auto point1 = to_physical(p1);
auto point2 = to_physical(p2);
thickness *= scale();
auto alternate_color_is_transparent = alternate_color == Color::Transparent;
// Special case: vertical line.
if (point1.x() == point2.x()) {
int const x = point1.x();
if (x < clip_rect.left() || x >= clip_rect.right())
return;
if (point1.y() > point2.y())
swap(point1, point2);
if (point1.y() >= clip_rect.bottom())
return;
if (point2.y() < clip_rect.top())
return;
int min_y = max(point1.y(), clip_rect.top());
int max_y = min(point2.y(), clip_rect.bottom() - 1);
if (style == LineStyle::Dotted) {
for (int y = min_y; y <= max_y; y += thickness * 2)
draw_physical_pixel({ x, y }, color, thickness);
} else if (style == LineStyle::Dashed) {
for (int y = min_y; y <= max_y; y += thickness * 6) {
draw_physical_pixel({ x, y }, color, thickness);
draw_physical_pixel({ x, min(y + thickness, max_y) }, color, thickness);
draw_physical_pixel({ x, min(y + thickness * 2, max_y) }, color, thickness);
if (!alternate_color_is_transparent) {
draw_physical_pixel({ x, min(y + thickness * 3, max_y) }, alternate_color, thickness);
draw_physical_pixel({ x, min(y + thickness * 4, max_y) }, alternate_color, thickness);
draw_physical_pixel({ x, min(y + thickness * 5, max_y) }, alternate_color, thickness);
}
}
} else {
for (int y = min_y; y <= max_y; y += thickness)
draw_physical_pixel({ x, y }, color, thickness);
draw_physical_pixel({ x, max_y }, color, thickness);
}
return;
}
// Special case: horizontal line.
if (point1.y() == point2.y()) {
int const y = point1.y();
if (y < clip_rect.top() || y >= clip_rect.bottom())
return;
if (point1.x() > point2.x())
swap(point1, point2);
if (point1.x() >= clip_rect.right())
return;
if (point2.x() < clip_rect.left())
return;
int min_x = max(point1.x(), clip_rect.left());
int max_x = min(point2.x(), clip_rect.right() - 1);
if (style == LineStyle::Dotted) {
for (int x = min_x; x <= max_x; x += thickness * 2)
draw_physical_pixel({ x, y }, color, thickness);
} else if (style == LineStyle::Dashed) {
for (int x = min_x; x <= max_x; x += thickness * 6) {
draw_physical_pixel({ x, y }, color, thickness);
draw_physical_pixel({ min(x + thickness, max_x), y }, color, thickness);
draw_physical_pixel({ min(x + thickness * 2, max_x), y }, color, thickness);
if (!alternate_color_is_transparent) {
draw_physical_pixel({ min(x + thickness * 3, max_x), y }, alternate_color, thickness);
draw_physical_pixel({ min(x + thickness * 4, max_x), y }, alternate_color, thickness);
draw_physical_pixel({ min(x + thickness * 5, max_x), y }, alternate_color, thickness);
}
}
} else {
for (int x = min_x; x <= max_x; x += thickness)
draw_physical_pixel({ x, y }, color, thickness);
draw_physical_pixel({ max_x, y }, color, thickness);
}
return;
}
int const adx = abs(point2.x() - point1.x());
int const ady = abs(point2.y() - point1.y());
if (adx > ady) {
if (point1.x() > point2.x())
swap(point1, point2);
} else {
if (point1.y() > point2.y())
swap(point1, point2);
}
int const dx = point2.x() - point1.x();
int const dy = point2.y() - point1.y();
int error = 0;
size_t number_of_pixels_drawn = 0;
auto draw_pixel_in_line = [&](int x, int y) {
bool should_draw_line = true;
if (style == LineStyle::Dotted && number_of_pixels_drawn % 2 == 1)
should_draw_line = false;
else if (style == LineStyle::Dashed && number_of_pixels_drawn % 6 >= 3)
should_draw_line = false;
if (should_draw_line)
draw_physical_pixel({ x, y }, color, thickness);
else if (!alternate_color_is_transparent)
draw_physical_pixel({ x, y }, alternate_color, thickness);
number_of_pixels_drawn++;
};
if (dx > dy) {
int const y_step = dy == 0 ? 0 : (dy > 0 ? 1 : -1);
int const delta_error = 2 * abs(dy);
int y = point1.y();
for (int x = point1.x(); x <= point2.x(); ++x) {
if (clip_rect.contains(x, y))
draw_pixel_in_line(x, y);
error += delta_error;
if (error >= dx) {
y += y_step;
error -= 2 * dx;
}
}
} else {
int const x_step = dx == 0 ? 0 : (dx > 0 ? 1 : -1);
int const delta_error = 2 * abs(dx);
int x = point1.x();
for (int y = point1.y(); y <= point2.y(); ++y) {
if (clip_rect.contains(x, y))
draw_pixel_in_line(x, y);
error += delta_error;
if (error >= dy) {
x += x_step;
error -= 2 * dy;
}
}
}
}
void Painter::draw_triangle_wave(IntPoint a_p1, IntPoint a_p2, Color color, int amplitude, int thickness)
{
// FIXME: Support more than horizontal waves
VERIFY(a_p1.y() == a_p2.y());
auto const p1 = thickness > 1 ? a_p1.translated(-(thickness / 2), -(thickness / 2)) : a_p1;
auto const p2 = thickness > 1 ? a_p2.translated(-(thickness / 2), -(thickness / 2)) : a_p2;
auto point1 = to_physical(p1);
auto point2 = to_physical(p2);
auto y = point1.y();
for (int x = 0; x <= point2.x() - point1.x(); ++x) {
auto y_offset = abs(x % (2 * amplitude) - amplitude) - amplitude;
draw_physical_pixel({ point1.x() + x, y + y_offset }, color, thickness);
}
}
static bool can_approximate_bezier_curve(FloatPoint p1, FloatPoint p2, FloatPoint control)
{
// TODO: Somehow calculate the required number of splits based on the curve (and its size).
constexpr float tolerance = 0.5f;
auto p1x = 3 * control.x() - 2 * p1.x() - p2.x();
auto p1y = 3 * control.y() - 2 * p1.y() - p2.y();
auto p2x = 3 * control.x() - 2 * p2.x() - p1.x();
auto p2y = 3 * control.y() - 2 * p2.y() - p1.y();
p1x = p1x * p1x;
p1y = p1y * p1y;
p2x = p2x * p2x;
p2y = p2y * p2y;
auto error = max(p1x, p2x) + max(p1y, p2y);
VERIFY(isfinite(error));
return error <= tolerance;
}
// static
void Painter::for_each_line_segment_on_bezier_curve(FloatPoint control_point, FloatPoint p1, FloatPoint p2, Function<void(FloatPoint, FloatPoint)>& callback)
{
struct SegmentDescriptor {
FloatPoint control_point;
FloatPoint p1;
FloatPoint p2;
};
static constexpr auto split_quadratic_bezier_curve = [](FloatPoint original_control, FloatPoint p1, FloatPoint p2, auto& segments) {
auto po1_midpoint = original_control + p1;
po1_midpoint /= 2;
auto po2_midpoint = original_control + p2;
po2_midpoint /= 2;
auto new_segment = po1_midpoint + po2_midpoint;
new_segment /= 2;
segments.append({ po2_midpoint, new_segment, p2 });
segments.append({ po1_midpoint, p1, new_segment });
};
Vector<SegmentDescriptor> segments;
segments.append({ control_point, p1, p2 });
while (!segments.is_empty()) {
auto segment = segments.take_last();
if (can_approximate_bezier_curve(segment.p1, segment.p2, segment.control_point))
callback(segment.p1, segment.p2);
else
split_quadratic_bezier_curve(segment.control_point, segment.p1, segment.p2, segments);
}
}
void Painter::for_each_line_segment_on_bezier_curve(FloatPoint control_point, FloatPoint p1, FloatPoint p2, Function<void(FloatPoint, FloatPoint)>&& callback)
{
for_each_line_segment_on_bezier_curve(control_point, p1, p2, callback);
}
void Painter::draw_quadratic_bezier_curve(IntPoint control_point, IntPoint p1, IntPoint p2, Color color, int thickness, LineStyle style)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
if (thickness <= 0)
return;
for_each_line_segment_on_bezier_curve(FloatPoint(control_point), FloatPoint(p1), FloatPoint(p2), [&](FloatPoint fp1, FloatPoint fp2) {
draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style);
});
}
void Painter::for_each_line_segment_on_cubic_bezier_curve(FloatPoint control_point_0, FloatPoint control_point_1, FloatPoint p1, FloatPoint p2, Function<void(FloatPoint, FloatPoint)>&& callback)
{
for_each_line_segment_on_cubic_bezier_curve(control_point_0, control_point_1, p1, p2, callback);
}
static bool can_approximate_cubic_bezier_curve(FloatPoint p1, FloatPoint p2, FloatPoint control_0, FloatPoint control_1)
{
// TODO: Somehow calculate the required number of splits based on the curve (and its size).
constexpr float tolerance = 0.5f;
auto ax = 3 * control_0.x() - 2 * p1.x() - p2.x();
auto ay = 3 * control_0.y() - 2 * p1.y() - p2.y();
auto bx = 3 * control_1.x() - p1.x() - 2 * p2.x();
auto by = 3 * control_1.y() - p1.y() - 2 * p2.y();
ax *= ax;
ay *= ay;
bx *= bx;
by *= by;
auto error = max(ax, bx) + max(ay, by);
VERIFY(isfinite(error));
return error <= tolerance;
}
// static
void Painter::for_each_line_segment_on_cubic_bezier_curve(FloatPoint control_point_0, FloatPoint control_point_1, FloatPoint p1, FloatPoint p2, Function<void(FloatPoint, FloatPoint)>& callback)
{
struct ControlPair {
FloatPoint control_point_0;
FloatPoint control_point_1;
};
struct SegmentDescriptor {
ControlPair control_points;
FloatPoint p1;
FloatPoint p2;
};
static constexpr auto split_cubic_bezier_curve = [](ControlPair const& original_controls, FloatPoint p1, FloatPoint p2, auto& segments) {
Array level_1_midpoints {
(p1 + original_controls.control_point_0) / 2,
(original_controls.control_point_0 + original_controls.control_point_1) / 2,
(original_controls.control_point_1 + p2) / 2,
};
Array level_2_midpoints {
(level_1_midpoints[0] + level_1_midpoints[1]) / 2,
(level_1_midpoints[1] + level_1_midpoints[2]) / 2,
};
auto level_3_midpoint = (level_2_midpoints[0] + level_2_midpoints[1]) / 2;
segments.append({ { level_2_midpoints[1], level_1_midpoints[2] }, level_3_midpoint, p2 });
segments.append({ { level_1_midpoints[0], level_2_midpoints[0] }, p1, level_3_midpoint });
};
Vector<SegmentDescriptor> segments;
segments.append({ { control_point_0, control_point_1 }, p1, p2 });
while (!segments.is_empty()) {
auto segment = segments.take_last();
if (can_approximate_cubic_bezier_curve(segment.p1, segment.p2, segment.control_points.control_point_0, segment.control_points.control_point_1))
callback(segment.p1, segment.p2);
else
split_cubic_bezier_curve(segment.control_points, segment.p1, segment.p2, segments);
}
}
void Painter::draw_cubic_bezier_curve(IntPoint control_point_0, IntPoint control_point_1, IntPoint p1, IntPoint p2, Color color, int thickness, Painter::LineStyle style)
{
for_each_line_segment_on_cubic_bezier_curve(FloatPoint(control_point_0), FloatPoint(control_point_1), FloatPoint(p1), FloatPoint(p2), [&](FloatPoint fp1, FloatPoint fp2) {
draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style);
});
}
// static
void Painter::for_each_line_segment_on_elliptical_arc(FloatPoint p1, FloatPoint p2, FloatPoint center, FloatSize radii, float x_axis_rotation, float theta_1, float theta_delta, Function<void(FloatPoint, FloatPoint)>& callback)
{
if (radii.width() <= 0 || radii.height() <= 0)
return;
auto start = p1;
auto end = p2;
bool start_swapped = false;
if (theta_delta < 0) {
swap(start, end);
theta_1 = theta_1 + theta_delta;
theta_delta = fabsf(theta_delta);
start_swapped = true;
}
auto relative_start = start - center;
auto a = radii.width();
auto b = radii.height();
// The segments are at most 1 long
auto largest_radius = max(a, b);
float theta_step = AK::atan2(1.f, (float)largest_radius);
FloatPoint current_point = relative_start;
FloatPoint next_point = { 0, 0 };
float sin_x_axis, cos_x_axis;
AK::sincos(x_axis_rotation, sin_x_axis, cos_x_axis);
auto rotate_point = [sin_x_axis, cos_x_axis](FloatPoint& p) {
auto original_x = p.x();
auto original_y = p.y();
p.set_x(original_x * cos_x_axis - original_y * sin_x_axis);
p.set_y(original_x * sin_x_axis + original_y * cos_x_axis);
};
auto emit_point = [&](auto p0, auto p1) {
// NOTE: If we swap the start/end we must swap the emitted points, so correct winding orders can be calculated.
if (start_swapped)
swap(p0, p1);
callback(p0, p1);
};
for (float theta = theta_1; theta <= theta_1 + theta_delta; theta += theta_step) {
float s, c;
AK::sincos(theta, s, c);
next_point.set_x(a * c);
next_point.set_y(b * s);
rotate_point(next_point);
emit_point(current_point + center, next_point + center);
current_point = next_point;
}
emit_point(current_point + center, end);
}
// static
void Painter::for_each_line_segment_on_elliptical_arc(FloatPoint p1, FloatPoint p2, FloatPoint center, FloatSize radii, float x_axis_rotation, float theta_1, float theta_delta, Function<void(FloatPoint, FloatPoint)>&& callback)
{
for_each_line_segment_on_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta, callback);
}
void Painter::draw_elliptical_arc(IntPoint p1, IntPoint p2, IntPoint center, FloatSize radii, float x_axis_rotation, float theta_1, float theta_delta, Color color, int thickness, LineStyle style)
{
VERIFY(scale() == 1); // FIXME: Add scaling support.
if (thickness <= 0)
return;
for_each_line_segment_on_elliptical_arc(FloatPoint(p1), FloatPoint(p2), FloatPoint(center), radii, x_axis_rotation, theta_1, theta_delta, [&](FloatPoint fp1, FloatPoint fp2) {
draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style);
});
}
void Painter::add_clip_rect(IntRect const& rect)
{
state().clip_rect.intersect(rect.translated(translation()));
state().clip_rect.intersect(m_target->rect()); // FIXME: This shouldn't be necessary?
}
void Painter::clear_clip_rect()
{
state().clip_rect = m_clip_origin;
}
PainterStateSaver::PainterStateSaver(Painter& painter)
: m_painter(painter)
{
m_painter.save();
}
PainterStateSaver::~PainterStateSaver()
{
m_painter.restore();
}
void Painter::stroke_path(Path const& path, Color color, int thickness)
{
if (thickness <= 0)
return;
fill_path(path.stroke_to_fill(thickness), color);
}
void Painter::blit_disabled(IntPoint location, Gfx::Bitmap const& bitmap, IntRect const& rect, Palette const& palette)
{
auto bright_color = palette.threed_highlight();
auto dark_color = palette.threed_shadow1();
blit_filtered(location.translated(1, 1), bitmap, rect, [&](auto) {
return bright_color;
});
blit_filtered(location, bitmap, rect, [&](Color src) {
int gray = src.to_grayscale().red();
if (gray > 160)
return bright_color;
return dark_color;
});
}
void Painter::blit_tiled(IntRect const& dst_rect, Gfx::Bitmap const& bitmap, IntRect const& rect)
{
auto tile_width = rect.width();
auto tile_height = rect.height();
auto dst_right = dst_rect.right() - 1;
auto dst_bottom = dst_rect.bottom() - 1;
for (int tile_y = dst_rect.top(); tile_y < dst_bottom; tile_y += tile_height) {
for (int tile_x = dst_rect.left(); tile_x < dst_right; tile_x += tile_width) {
IntRect tile_src_rect = rect;
auto tile_x_overflow = tile_x + tile_width - dst_right;
if (tile_x_overflow > 0)
tile_src_rect.set_width(tile_width - tile_x_overflow);
auto tile_y_overflow = tile_y + tile_height - dst_bottom;
if (tile_y_overflow > 0)
tile_src_rect.set_height(tile_height - tile_y_overflow);
blit(IntPoint(tile_x, tile_y), bitmap, tile_src_rect);
}
}
}
ByteString parse_ampersand_string(StringView raw_text, Optional<size_t>* underline_offset)
{
if (raw_text.is_empty())
return ByteString::empty();
StringBuilder builder;
for (size_t i = 0; i < raw_text.length(); ++i) {
if (raw_text[i] == '&') {
if (i != (raw_text.length() - 1) && raw_text[i + 1] == '&') {
builder.append(raw_text[i]);
++i;
} else if (underline_offset && !(*underline_offset).has_value()) {
*underline_offset = i;
}
continue;
}
builder.append(raw_text[i]);
}
return builder.to_byte_string();
}
void Gfx::Painter::draw_ui_text(Gfx::IntRect const& rect, StringView text, Gfx::Font const& font, Gfx::TextAlignment text_alignment, Gfx::Color color)
{
Optional<size_t> underline_offset;
auto name_to_draw = parse_ampersand_string(text, &underline_offset);
Gfx::IntRect text_rect { 0, 0, font.width_rounded_up(name_to_draw), font.pixel_size_rounded_up() };
text_rect.align_within(rect, text_alignment);
draw_text(text_rect, name_to_draw, font, text_alignment, color);
if (underline_offset.has_value()) {
Utf8View utf8_view { name_to_draw };
float width = 0;
for (auto it = utf8_view.begin(); it != utf8_view.end(); ++it) {
if (utf8_view.byte_offset_of(it) >= underline_offset.value()) {
int y = text_rect.bottom();
int x1 = text_rect.left() + width;
int x2 = x1 + font.glyph_or_emoji_width(it);
draw_line({ x1, y }, { x2, y }, color);
break;
}
width += font.glyph_or_emoji_width(it) + font.glyph_spacing();
}
}
}
void Painter::draw_text_run(IntPoint baseline_start, Utf8View const& string, Font const& font, Color color)
{
draw_text_run(baseline_start.to_type<float>(), string, font, color);
}
void Painter::draw_text_run(FloatPoint baseline_start, Utf8View const& string, Font const& font, Color color)
{
auto font_list = Gfx::FontCascadeList::create();
font_list->add(font);
for_each_glyph_position(baseline_start, string, font_list, [&](DrawGlyphOrEmoji glyph_or_emoji) {
if (glyph_or_emoji.has<DrawGlyph>()) {
auto& glyph = glyph_or_emoji.get<DrawGlyph>();
draw_glyph(glyph.position, glyph.code_point, *glyph.font, color);
} else {
auto& emoji = glyph_or_emoji.get<DrawEmoji>();
draw_emoji(emoji.position.to_type<int>(), *emoji.emoji, *emoji.font);
}
});
}
void Painter::draw_scaled_bitmap_with_transform(IntRect const& dst_rect, Bitmap const& bitmap, FloatRect const& src_rect, AffineTransform const& transform, float opacity, Painter::ScalingMode scaling_mode)
{
if (transform.is_identity_or_translation()) {
translate(transform.e(), transform.f());
draw_scaled_bitmap(dst_rect, bitmap, src_rect, opacity, scaling_mode);
translate(-transform.e(), -transform.f());
} else {
// The painter has an affine transform, we have to draw through it!
// FIXME: This is kinda inefficient.
// What we currently do, roughly:
// - Map the destination rect through the context's transform.
// - Compute the bounding rect of the destination quad.
// - For each point in the clipped bounding rect, reverse-map it to a point in the source image.
// - Sample the source image at the computed point.
// - Set or blend (depending on alpha values) one pixel in the canvas.
// - Loop.
// FIXME: Painter should have an affine transform as part of its state and handle all of this instead.
if (opacity == 0.0f)
return;
auto inverse_transform = transform.inverse();
if (!inverse_transform.has_value())
return;
auto destination_quad = transform.map_to_quad(dst_rect.to_type<float>());
auto destination_bounding_rect = destination_quad.bounding_rect().to_rounded<int>();
auto source_rect = enclosing_int_rect(src_rect).intersected(bitmap.rect());
Gfx::AffineTransform source_transform;
source_transform.translate(src_rect.x(), src_rect.y());
source_transform.scale(src_rect.width() / dst_rect.width(), src_rect.height() / dst_rect.height());
source_transform.translate(-dst_rect.x(), -dst_rect.y());
auto translated_dest_rect = destination_bounding_rect.translated(translation());
auto clipped_bounding_rect = translated_dest_rect.intersected(clip_rect());
if (clipped_bounding_rect.is_empty())
return;
auto sample_transform = source_transform.multiply(*inverse_transform);
auto start_offset = destination_bounding_rect.location() + (clipped_bounding_rect.location() - translated_dest_rect.location());
for (int y = 0; y < clipped_bounding_rect.height(); ++y) {
for (int x = 0; x < clipped_bounding_rect.width(); ++x) {
auto point = Gfx::IntPoint { x, y };
auto sample_point = point + start_offset;
// AffineTransform::map(IntPoint) rounds internally, which is wrong here. So explicitly call the FloatPoint version, and then truncate the result.
auto source_point = Gfx::IntPoint { sample_transform.map(Gfx::FloatPoint { sample_point }) };
if (!source_rect.contains(source_point))
continue;
auto source_color = bitmap.get_pixel(source_point);
if (source_color.alpha() == 0)
continue;
if (opacity != 1.0f)
source_color = source_color.with_opacity(opacity);
set_physical_pixel(point + clipped_bounding_rect.location(), source_color, true);
}
}
}
}
void Painter::draw_signed_distance_field(IntRect const& dst_rect, Color color, Gfx::GrayscaleBitmap const& sdf, float smoothing)
{
auto target_rect = dst_rect.translated(translation());
auto clipped_rect = target_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
target_rect *= scale();
clipped_rect *= scale();
auto start_offset = clipped_rect.location() - target_rect.location();
auto x_ratio = static_cast<float>(sdf.width() - 1) / (dst_rect.width() - 1);
auto y_ratio = static_cast<float>(sdf.height() - 1) / (dst_rect.height() - 1);
auto smooth_step = [](auto edge0, auto edge1, auto x) {
x = clamp((x - edge0) / (edge1 - edge0), 0.0f, 1.0f);
return x * x * (3 - 2 * x);
};
auto pixel_at = [&](unsigned x, unsigned y) -> u8 {
// Returning 255 means this pixel is outside the shape.
if (x >= sdf.width() || y >= sdf.height())
return 255;
return sdf.pixel_at(x, y);
};
for (int i = 0; i < clipped_rect.height(); ++i) {
for (int j = 0; j < clipped_rect.width(); ++j) {
auto point = IntPoint { j, i };
auto sample_point = point + start_offset;
auto target_x = static_cast<int>(x_ratio * sample_point.x());
auto target_y = static_cast<int>(y_ratio * sample_point.y());
auto target_fraction_x = (x_ratio * sample_point.x()) - target_x;
auto target_fraction_y = (y_ratio * sample_point.y()) - target_y;
auto a = pixel_at(target_x, target_y);
auto b = pixel_at(target_x + 1, target_y);
auto c = pixel_at(target_x, target_y + 1);
auto d = pixel_at(target_x + 1, target_y + 1);
float distance = (a * (1 - target_fraction_x) * (1 - target_fraction_y)
+ b * target_fraction_x * (1 - target_fraction_y)
+ c * (1 - target_fraction_x) * target_fraction_y
+ d * target_fraction_x * target_fraction_y)
/ 255.0f;
u8 alpha = (1 - clamp(smooth_step(0.5f - smoothing, 0.5f + smoothing, distance), 0.0f, 1.0f)) * 255;
set_physical_pixel(point + clipped_rect.location(), color.with_alpha(alpha), true);
}
}
}
}