ladybird/Kernel/VM/PhysicalRegion.h
Liav A d6e122fd3a Kernel: Allow contiguous allocations in physical memory
For that, we have a new type of VMObject, called
ContiguousVMObject, that is responsible for allocating contiguous
physical pages.
2020-03-08 14:13:30 +01:00

74 lines
2.8 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Bitmap.h>
#include <AK/NonnullRefPtr.h>
#include <AK/Optional.h>
#include <AK/RefCounted.h>
#include <Kernel/VM/PhysicalPage.h>
namespace Kernel {
class PhysicalRegion : public RefCounted<PhysicalRegion> {
AK_MAKE_ETERNAL
public:
static NonnullRefPtr<PhysicalRegion> create(PhysicalAddress lower, PhysicalAddress upper);
~PhysicalRegion() {}
void expand(PhysicalAddress lower, PhysicalAddress upper);
unsigned finalize_capacity();
PhysicalAddress lower() const { return m_lower; }
PhysicalAddress upper() const { return m_upper; }
unsigned size() const { return m_pages; }
unsigned used() const { return m_used; }
unsigned free() const { return m_pages - m_used; }
bool contains(PhysicalPage& page) const { return page.paddr() >= m_lower && page.paddr() <= m_upper; }
RefPtr<PhysicalPage> take_free_page(bool supervisor);
Vector<RefPtr<PhysicalPage>> take_contiguous_free_pages(size_t count, bool supervisor);
void return_page_at(PhysicalAddress addr);
void return_page(PhysicalPage&& page) { return_page_at(page.paddr()); }
private:
unsigned find_contiguous_free_pages(size_t count);
Optional<unsigned> find_and_allocate_contiguous_range(size_t count);
PhysicalRegion(PhysicalAddress lower, PhysicalAddress upper);
PhysicalAddress m_lower;
PhysicalAddress m_upper;
unsigned m_pages { 0 };
unsigned m_used { 0 };
unsigned m_last { 0 };
Bitmap m_bitmap;
};
}