ladybird/Userland/Libraries/LibWeb/PixelUnits.h
Bastian Neumann 7cd489d6aa LibWeb: Remove early continue in size parsing
Step 5 of parsing was always skipped because step 4 continues.

Running step 5 causes some of the denominators to be 0 and causes
divide by zero error in CSSPixelFraction.

SVG Image with height of 0 will cause divide by zero error when
calculating intrinsic aspect ratio of SVGDecoderImageData.

We also get a divide by zero error in AlignContent::SpaceBetween of the
FlexFormatingContext.

During auto track stretching in GridFormatingContext there is a
possibility for count_of_auto_max_sizing_tracks to stay 0.
2024-01-20 15:22:25 +01:00

526 lines
16 KiB
C++

/*
* Copyright (c) 2023, Aliaksandr Kalenik <kalenik.aliaksandr@gmail.com>
* Copyright (c) 2012-2023, Apple Inc. All rights reserved.
* Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/Debug.h>
#include <AK/DistinctNumeric.h>
#include <AK/Math.h>
#include <AK/Traits.h>
#include <LibGfx/Forward.h>
#include <LibGfx/Rect.h>
#include <LibIPC/Forward.h>
#include <math.h>
namespace Web {
/// DevicePixels: A position or length on the physical display.
AK_TYPEDEF_DISTINCT_NUMERIC_GENERAL(int, DevicePixels, Arithmetic, CastToUnderlying, Comparison, Increment);
template<Integral T>
constexpr bool operator==(DevicePixels left, T right) { return left.value() == right; }
template<Integral T>
constexpr bool operator!=(DevicePixels left, T right) { return left.value() != right; }
template<Integral T>
constexpr bool operator>(DevicePixels left, T right) { return left.value() > right; }
template<Integral T>
constexpr bool operator<(DevicePixels left, T right) { return left.value() < right; }
template<Integral T>
constexpr bool operator>=(DevicePixels left, T right) { return left.value() >= right; }
template<Integral T>
constexpr bool operator<=(DevicePixels left, T right) { return left.value() <= right; }
template<Integral T>
constexpr DevicePixels operator*(DevicePixels left, T right) { return left.value() * right; }
template<Integral T>
constexpr DevicePixels operator*(T left, DevicePixels right) { return right * left; }
template<Integral T>
constexpr DevicePixels operator/(DevicePixels left, T right) { return left.value() / right; }
template<Integral T>
constexpr DevicePixels operator%(DevicePixels left, T right) { return left.value() % right; }
class CSSPixelFraction;
/// CSSPixels: A position or length in CSS "reference pixels", independent of zoom or screen DPI.
/// See https://www.w3.org/TR/css-values-3/#reference-pixel
class CSSPixels {
public:
static constexpr i32 fractional_bits = 6;
static constexpr i32 fixed_point_denominator = 1 << fractional_bits;
static constexpr i32 radix_mask = fixed_point_denominator - 1;
static constexpr i32 max_integer_value = NumericLimits<int>::max() >> fractional_bits;
static constexpr i32 min_integer_value = NumericLimits<int>::min() >> fractional_bits;
constexpr CSSPixels() = default;
template<Signed I>
constexpr CSSPixels(I value)
{
if (value > max_integer_value) [[unlikely]]
m_value = NumericLimits<int>::max();
else if (value < min_integer_value) [[unlikely]]
m_value = NumericLimits<int>::min();
else
m_value = static_cast<int>(value) << fractional_bits;
}
template<FloatingPoint F>
explicit CSSPixels(F value)
{
*this = nearest_value_for(value);
}
template<FloatingPoint F>
static CSSPixels nearest_value_for(F value)
{
i32 raw_value = 0;
if (!isnan(value))
raw_value = AK::clamp_to<int>(value * fixed_point_denominator);
// Note: The resolution of CSSPixels is 0.015625, so care must be taken when converting
// floats/doubles to CSSPixels as small values (such as scale factors) can underflow to zero,
// or otherwise produce inaccurate results (when scaled back up).
if (raw_value == 0 && value != 0)
dbgln_if(LIBWEB_CSS_DEBUG, "CSSPixels: Conversion from float or double underflowed to zero");
return from_raw(raw_value);
}
template<Unsigned U>
constexpr CSSPixels(U value)
{
if (value > max_integer_value) [[unlikely]]
m_value = NumericLimits<int>::max();
else
m_value = static_cast<int>(value) << fractional_bits;
}
static constexpr CSSPixels from_raw(int value)
{
CSSPixels res;
res.set_raw_value(value);
return res;
}
static constexpr CSSPixels min()
{
return from_raw(NumericLimits<int>::min());
}
static constexpr CSSPixels max()
{
return from_raw(NumericLimits<int>::max());
}
static constexpr CSSPixels smallest_positive_value()
{
return from_raw(1);
}
float to_float() const;
double to_double() const;
int to_int() const;
constexpr int raw_value() const { return m_value; }
constexpr void set_raw_value(int value) { m_value = value; }
constexpr bool might_be_saturated() const { return raw_value() == NumericLimits<i32>::max() || raw_value() == NumericLimits<i32>::min(); }
constexpr bool operator==(CSSPixels const& other) const = default;
explicit operator double() const { return to_double(); }
explicit operator float() const { return to_float(); }
explicit operator int() const { return to_int(); }
constexpr CSSPixels& operator++()
{
m_value = Checked<int>::saturating_add(m_value, fixed_point_denominator);
return *this;
}
constexpr CSSPixels& operator--()
{
m_value = Checked<int>::saturating_sub(m_value, fixed_point_denominator);
return *this;
}
constexpr int operator<=>(CSSPixels const& other) const
{
return raw_value() > other.raw_value()
? 1
: raw_value() < other.raw_value()
? -1
: 0;
}
constexpr CSSPixels operator+() const { return from_raw(+raw_value()); }
constexpr CSSPixels operator-() const { return from_raw(-raw_value()); }
constexpr CSSPixels operator+(CSSPixels const& other) const
{
return from_raw(Checked<int>::saturating_add(raw_value(), other.raw_value()));
}
constexpr CSSPixels operator-(CSSPixels const& other) const
{
return from_raw(Checked<int>::saturating_sub(raw_value(), other.raw_value()));
}
constexpr CSSPixels operator*(CSSPixels const& other) const
{
i64 value = raw_value();
value *= other.raw_value();
int int_value = AK::clamp_to<int>(value >> fractional_bits);
// Rounding:
// If last bit cut off was 1:
if (value & (1u << (fractional_bits - 1))) {
// If any bit after was 1 as well
if (value & (radix_mask >> 1u)) {
// We need to round away from 0
int_value = Checked<int>::saturating_add(int_value, 1);
} else {
// Otherwise we round to the next even value
// Which means we add the least significant bit of the raw integer value
int_value = Checked<int>::saturating_add(int_value, int_value & 1);
}
}
return from_raw(int_value);
}
constexpr CSSPixels operator*(CSSPixelFraction const& other) const;
constexpr CSSPixelFraction operator/(CSSPixels const& other) const;
constexpr CSSPixels operator/(CSSPixelFraction const& other) const;
constexpr CSSPixels& operator+=(CSSPixels const& other)
{
*this = *this + other;
return *this;
}
constexpr CSSPixels& operator-=(CSSPixels const& other)
{
*this = *this - other;
return *this;
}
constexpr CSSPixels& operator*=(CSSPixels const& other)
{
*this = *this * other;
return *this;
}
constexpr CSSPixels& operator*=(CSSPixelFraction const& other)
{
*this = *this * other;
return *this;
}
constexpr CSSPixels& operator/=(CSSPixels const& other)
{
*this = *this * other;
return *this;
}
constexpr CSSPixels abs() const { return from_raw(::abs(m_value)); }
CSSPixels& scale_by(float value)
{
*this = CSSPixels(to_float() * value);
return *this;
}
CSSPixels& scale_by(double value)
{
*this = CSSPixels(to_double() * value);
return *this;
}
CSSPixels scaled(float value) const
{
auto result = *this;
result.scale_by(value);
return result;
}
CSSPixels scaled(double value) const
{
auto result = *this;
result.scale_by(value);
return result;
}
private:
i32 m_value { 0 };
};
template<Integral T>
constexpr bool operator==(CSSPixels left, T right) { return left == CSSPixels(right); }
inline bool operator==(CSSPixels left, float right) { return left.to_float() == right; }
inline bool operator==(CSSPixels left, double right) { return left.to_double() == right; }
template<Integral T>
constexpr bool operator>(CSSPixels left, T right) { return left > CSSPixels(right); }
inline bool operator>(CSSPixels left, float right) { return left.to_float() > right; }
inline bool operator>(CSSPixels left, double right) { return left.to_double() > right; }
template<Integral T>
constexpr bool operator<(CSSPixels left, T right) { return left < CSSPixels(right); }
inline bool operator<(CSSPixels left, float right) { return left.to_float() < right; }
inline bool operator<(CSSPixels left, double right) { return left.to_double() < right; }
template<Integral T>
constexpr CSSPixels operator*(CSSPixels left, T right) { return left * CSSPixels(right); }
inline float operator*(CSSPixels left, float right) { return left.to_float() * right; }
inline double operator*(CSSPixels left, double right) { return left.to_double() * right; }
template<Integral T>
constexpr CSSPixels operator*(T left, CSSPixels right) { return CSSPixels(left) * right; }
inline float operator*(float left, CSSPixels right) { return right.to_float() * left; }
inline double operator*(double left, CSSPixels right) { return right.to_double() * left; }
class CSSPixelFraction {
public:
constexpr CSSPixelFraction(CSSPixels numerator, CSSPixels denominator)
: m_numerator(numerator)
, m_denominator(denominator)
{
VERIFY(denominator != 0);
}
explicit constexpr CSSPixelFraction(CSSPixels value)
: m_numerator(value)
, m_denominator(1)
{
}
template<Signed I>
constexpr CSSPixelFraction(I numerator, I denominator = 1)
: m_numerator(numerator)
, m_denominator(denominator)
{
VERIFY(denominator != 0);
}
constexpr operator CSSPixels() const
{
i64 wide_value = m_numerator.raw_value();
wide_value <<= CSSPixels::fractional_bits;
wide_value /= m_denominator.raw_value();
return CSSPixels::from_raw(AK::clamp_to<int>(wide_value));
}
constexpr CSSPixels operator-(CSSPixels const& other) const
{
return CSSPixels(*this) - other;
}
constexpr CSSPixels operator+(CSSPixels const& other) const
{
return CSSPixels(*this) + other;
}
constexpr CSSPixelFraction operator-() const
{
return CSSPixelFraction(-numerator(), denominator());
}
constexpr int operator<=>(CSSPixelFraction const& other) const
{
auto left = static_cast<i64>(m_numerator.raw_value()) * other.m_denominator.raw_value();
auto right = static_cast<i64>(other.m_numerator.raw_value()) * m_denominator.raw_value();
if (left > right)
return 1;
if (left < right)
return -1;
return 0;
}
template<Signed I>
constexpr int operator<=>(I const& other) const
{
return *this <=> CSSPixelFraction(other);
}
constexpr CSSPixels numerator() const { return m_numerator; }
constexpr CSSPixels denominator() const { return m_denominator; }
float to_float() const { return CSSPixels(*this).to_float(); }
double to_double() const { return CSSPixels(*this).to_double(); }
int to_int() const { return CSSPixels(*this).to_int(); }
bool might_be_saturated() const { return CSSPixels(*this).might_be_saturated(); }
private:
CSSPixels m_numerator;
CSSPixels m_denominator;
};
constexpr CSSPixels CSSPixels::operator*(CSSPixelFraction const& other) const
{
i64 wide_value = raw_value();
wide_value *= other.numerator().raw_value();
wide_value /= other.denominator().raw_value();
return CSSPixels::from_raw(AK::clamp_to<int>(wide_value));
}
constexpr CSSPixelFraction CSSPixels::operator/(CSSPixels const& other) const
{
return CSSPixelFraction(*this, other);
}
constexpr CSSPixels CSSPixels::operator/(CSSPixelFraction const& other) const
{
i64 wide_value = raw_value();
wide_value *= other.denominator().raw_value();
wide_value /= other.numerator().raw_value();
return CSSPixels::from_raw(AK::clamp_to<int>(wide_value));
}
template<Integral T>
constexpr CSSPixelFraction operator/(CSSPixels left, T right) { return left / CSSPixels(right); }
inline float operator/(CSSPixels left, float right) { return left.to_float() / right; }
inline double operator/(CSSPixels left, double right) { return left.to_double() / right; }
using CSSPixelLine = Gfx::Line<CSSPixels>;
using CSSPixelPoint = Gfx::Point<CSSPixels>;
using CSSPixelRect = Gfx::Rect<CSSPixels>;
using CSSPixelSize = Gfx::Size<CSSPixels>;
using DevicePixelLine = Gfx::Line<DevicePixels>;
using DevicePixelPoint = Gfx::Point<DevicePixels>;
using DevicePixelRect = Gfx::Rect<DevicePixels>;
using DevicePixelSize = Gfx::Size<DevicePixels>;
}
constexpr Web::CSSPixels abs(Web::CSSPixels const& value)
{
return value.abs();
}
constexpr Web::CSSPixels floor(Web::CSSPixels const& value)
{
return Web::CSSPixels::from_raw(value.raw_value() & ~Web::CSSPixels::radix_mask);
}
constexpr Web::CSSPixels ceil(Web::CSSPixels const& value)
{
auto floor_value = value.raw_value() & ~Web::CSSPixels::radix_mask;
auto ceil_value = floor_value + (value.raw_value() & Web::CSSPixels::radix_mask ? Web::CSSPixels::fixed_point_denominator : 0);
return Web::CSSPixels::from_raw(ceil_value);
}
constexpr Web::CSSPixels round(Web::CSSPixels const& value)
{
// FIXME: Maybe do this with bit-fiddling instead
if (value > 0)
return floor(value + Web::CSSPixels::from_raw(Web::CSSPixels::fixed_point_denominator >> 1 /* 0.5 */));
return ceil(value - Web::CSSPixels::from_raw(Web::CSSPixels::fixed_point_denominator >> 1 /* 0.5 */));
}
inline Web::CSSPixels sqrt(Web::CSSPixels const& value)
{
return Web::CSSPixels::nearest_value_for(AK::sqrt(value.to_float()));
}
constexpr Web::DevicePixels abs(Web::DevicePixels const& value)
{
return AK::abs(value.value());
}
constexpr Web::CSSPixels square_distance_between(Web::CSSPixelPoint const& a, Web::CSSPixelPoint const& b)
{
auto delta_x = abs(a.x() - b.x());
auto delta_y = abs(a.y() - b.y());
return delta_x * delta_x + delta_y * delta_y;
}
template<>
template<>
[[nodiscard]] ALWAYS_INLINE Web::CSSPixelRect Web::CSSPixelRect::to_rounded<Web::CSSPixels>() const
{
return {
round(x()),
round(y()),
round(width()),
round(height()),
};
}
namespace AK {
template<>
struct Traits<Web::CSSPixels> : public DefaultTraits<Web::CSSPixels> {
static unsigned hash(Web::CSSPixels const& key)
{
return Traits<int>::hash(key.raw_value());
}
static bool equals(Web::CSSPixels const& a, Web::CSSPixels const& b)
{
return a == b;
}
};
template<>
struct Traits<Web::DevicePixels> : public DefaultTraits<Web::DevicePixels> {
static unsigned hash(Web::DevicePixels const& key)
{
return Traits<Web::DevicePixels::Type>::hash(key.value());
}
static bool equals(Web::DevicePixels const& a, Web::DevicePixels const& b)
{
return a == b;
}
};
template<>
struct Formatter<Web::CSSPixels> : Formatter<double> {
ErrorOr<void> format(FormatBuilder& builder, Web::CSSPixels const& value)
{
return Formatter<double>::format(builder, value.to_double());
}
};
template<>
struct Formatter<Web::DevicePixels> : Formatter<Web::DevicePixels::Type> {
ErrorOr<void> format(FormatBuilder& builder, Web::DevicePixels const& value)
{
return Formatter<Web::DevicePixels::Type>::format(builder, value.value());
}
};
}
namespace IPC {
template<>
ErrorOr<void> encode(Encoder& encoder, Web::DevicePixels const& value);
template<>
ErrorOr<Web::DevicePixels> decode(Decoder& decoder);
template<>
ErrorOr<void> encode(Encoder& encoder, Web::DevicePixelPoint const& value);
template<>
ErrorOr<Web::DevicePixelPoint> decode(Decoder& decoder);
template<>
ErrorOr<void> encode(Encoder& encoder, Web::DevicePixelSize const& value);
template<>
ErrorOr<Web::DevicePixelSize> decode(Decoder& decoder);
template<>
ErrorOr<void> encode(Encoder& encoder, Web::DevicePixelRect const& value);
template<>
ErrorOr<Web::DevicePixelRect> decode(Decoder& decoder);
}