ladybird/Kernel/Syscalls/ptrace.cpp
Brian Gianforcaro 54b9a4ec1e Kernel: Handle promise violations in the syscall handler
Previously we would crash the process immediately when a promise
violation was found during a syscall. This is error prone, as we
don't unwind the stack. This means that in certain cases we can
leak resources, like an OwnPtr / RefPtr tracked on the stack. Or
even leak a lock acquired in a ScopeLockLocker.

To remedy this situation we move the promise violation handling to
the syscall handler, right before we return to user space. This
allows the code to follow the normal unwind path, and grantees
there is no longer any cleanup that needs to occur.

The Process::require_promise() and Process::require_no_promises()
functions were modified to return ErrorOr<void> so we enforce that
the errors are always propagated by the caller.
2021-12-29 18:08:15 +01:00

278 lines
8.3 KiB
C++

/*
* Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ScopeGuard.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PrivateInodeVMObject.h>
#include <Kernel/Memory/Region.h>
#include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
#include <Kernel/Memory/SharedInodeVMObject.h>
#include <Kernel/Process.h>
#include <Kernel/ThreadTracer.h>
namespace Kernel {
static ErrorOr<FlatPtr> handle_ptrace(const Kernel::Syscall::SC_ptrace_params& params, Process& caller)
{
SpinlockLocker scheduler_lock(g_scheduler_lock);
if (params.request == PT_TRACE_ME) {
if (Process::current().tracer())
return EBUSY;
caller.set_wait_for_tracer_at_next_execve(true);
return 0;
}
// FIXME: PID/TID BUG
// This bug allows to request PT_ATTACH (or anything else) the same process, as
// long it is not the main thread. Alternatively, if this is desired, then the
// bug is that this prevents PT_ATTACH to the main thread from another thread.
if (params.tid == caller.pid().value())
return EINVAL;
auto peer = Thread::from_tid(params.tid);
if (!peer)
return ESRCH;
MutexLocker ptrace_locker(peer->process().ptrace_lock());
if ((peer->process().uid() != caller.euid())
|| (peer->process().uid() != peer->process().euid())) // Disallow tracing setuid processes
return EACCES;
if (!peer->process().is_dumpable())
return EACCES;
auto& peer_process = peer->process();
if (params.request == PT_ATTACH) {
if (peer_process.tracer()) {
return EBUSY;
}
TRY(peer_process.start_tracing_from(caller.pid()));
SpinlockLocker lock(peer->get_lock());
if (peer->state() != Thread::State::Stopped) {
peer->send_signal(SIGSTOP, &caller);
}
return 0;
}
auto* tracer = peer_process.tracer();
if (!tracer)
return EPERM;
if (tracer->tracer_pid() != caller.pid())
return EBUSY;
if (peer->state() == Thread::State::Running)
return EBUSY;
scheduler_lock.unlock();
switch (params.request) {
case PT_CONTINUE:
peer->send_signal(SIGCONT, &caller);
break;
case PT_DETACH:
peer_process.stop_tracing();
peer->send_signal(SIGCONT, &caller);
break;
case PT_SYSCALL:
tracer->set_trace_syscalls(true);
peer->send_signal(SIGCONT, &caller);
break;
case PT_GETREGS: {
if (!tracer->has_regs())
return EINVAL;
auto* regs = reinterpret_cast<PtraceRegisters*>(params.addr);
TRY(copy_to_user(regs, &tracer->regs()));
break;
}
case PT_SETREGS: {
if (!tracer->has_regs())
return EINVAL;
PtraceRegisters regs {};
TRY(copy_from_user(&regs, (const PtraceRegisters*)params.addr));
auto& peer_saved_registers = peer->get_register_dump_from_stack();
// Verify that the saved registers are in usermode context
if ((peer_saved_registers.cs & 0x03) != 3)
return EFAULT;
tracer->set_regs(regs);
copy_ptrace_registers_into_kernel_registers(peer_saved_registers, regs);
break;
}
case PT_PEEK: {
auto data = TRY(peer->process().peek_user_data(Userspace<const FlatPtr*> { (FlatPtr)params.addr }));
TRY(copy_to_user((FlatPtr*)params.data, &data));
break;
}
case PT_POKE:
TRY(peer->process().poke_user_data(Userspace<FlatPtr*> { (FlatPtr)params.addr }, params.data));
return 0;
case PT_PEEKBUF: {
Kernel::Syscall::SC_ptrace_buf_params buf_params {};
TRY(copy_from_user(&buf_params, reinterpret_cast<Kernel::Syscall::SC_ptrace_buf_params*>(params.data)));
// This is a comparatively large allocation on the Kernel stack.
// However, we know that we're close to the root of the call stack, and the following calls shouldn't go too deep.
Array<u8, PAGE_SIZE> buf;
FlatPtr tracee_ptr = (FlatPtr)params.addr;
while (buf_params.buf.size > 0) {
size_t copy_this_iteration = min(buf.size(), buf_params.buf.size);
TRY(peer->process().peek_user_data(buf.span().slice(0, copy_this_iteration), Userspace<const u8*> { tracee_ptr }));
TRY(copy_to_user((void*)buf_params.buf.data, buf.data(), copy_this_iteration));
tracee_ptr += copy_this_iteration;
buf_params.buf.data += copy_this_iteration;
buf_params.buf.size -= copy_this_iteration;
}
break;
}
case PT_PEEKDEBUG: {
auto data = TRY(peer->peek_debug_register(reinterpret_cast<uintptr_t>(params.addr)));
TRY(copy_to_user((FlatPtr*)params.data, &data));
break;
}
case PT_POKEDEBUG:
TRY(peer->poke_debug_register(reinterpret_cast<uintptr_t>(params.addr), params.data));
return 0;
default:
return EINVAL;
}
return 0;
}
ErrorOr<FlatPtr> Process::sys$ptrace(Userspace<const Syscall::SC_ptrace_params*> user_params)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
TRY(require_promise(Pledge::ptrace));
auto params = TRY(copy_typed_from_user(user_params));
return handle_ptrace(params, *this);
}
/**
* "Does this process have a thread that is currently being traced by the provided process?"
*/
bool Process::has_tracee_thread(ProcessID tracer_pid)
{
if (auto const* tracer = this->tracer())
return tracer->tracer_pid() == tracer_pid;
return false;
}
ErrorOr<FlatPtr> Process::peek_user_data(Userspace<const FlatPtr*> address)
{
// This function can be called from the context of another
// process that called PT_PEEK
ScopedAddressSpaceSwitcher switcher(*this);
return TRY(copy_typed_from_user(address));
}
ErrorOr<void> Process::peek_user_data(Span<u8> destination, Userspace<const u8*> address)
{
// This function can be called from the context of another
// process that called PT_PEEKBUF
ScopedAddressSpaceSwitcher switcher(*this);
TRY(copy_from_user(destination.data(), address, destination.size()));
return {};
}
ErrorOr<void> Process::poke_user_data(Userspace<FlatPtr*> address, FlatPtr data)
{
Memory::VirtualRange range = { address.vaddr(), sizeof(FlatPtr) };
auto* region = address_space().find_region_containing(range);
if (!region)
return EFAULT;
ScopedAddressSpaceSwitcher switcher(*this);
if (region->is_shared()) {
// If the region is shared, we change its vmobject to a PrivateInodeVMObject
// to prevent the write operation from changing any shared inode data
VERIFY(region->vmobject().is_shared_inode());
auto vmobject = TRY(Memory::PrivateInodeVMObject::try_create_with_inode(static_cast<Memory::SharedInodeVMObject&>(region->vmobject()).inode()));
region->set_vmobject(move(vmobject));
region->set_shared(false);
}
const bool was_writable = region->is_writable();
if (!was_writable) {
region->set_writable(true);
region->remap();
}
ScopeGuard rollback([&]() {
if (!was_writable) {
region->set_writable(false);
region->remap();
}
});
return copy_to_user(address, &data);
}
ErrorOr<FlatPtr> Thread::peek_debug_register(u32 register_index)
{
FlatPtr data;
switch (register_index) {
case 0:
data = m_debug_register_state.dr0;
break;
case 1:
data = m_debug_register_state.dr1;
break;
case 2:
data = m_debug_register_state.dr2;
break;
case 3:
data = m_debug_register_state.dr3;
break;
case 6:
data = m_debug_register_state.dr6;
break;
case 7:
data = m_debug_register_state.dr7;
break;
default:
return EINVAL;
}
return data;
}
ErrorOr<void> Thread::poke_debug_register(u32 register_index, FlatPtr data)
{
switch (register_index) {
case 0:
m_debug_register_state.dr0 = data;
break;
case 1:
m_debug_register_state.dr1 = data;
break;
case 2:
m_debug_register_state.dr2 = data;
break;
case 3:
m_debug_register_state.dr3 = data;
break;
case 7:
m_debug_register_state.dr7 = data;
break;
default:
return EINVAL;
}
return {};
}
}