ladybird/Userland/Services/WindowServer/Screen.cpp
Liav A 13e9947b4b WindowServer: Fallback to safe mode-setting in case of mapping overflow
In case of possible framebuffer mapping overflow, just fallback to the
safe mode-setting of the DisplayConnector, because in that state we know
for sure that we can map a usable framebuffer (otherwise it is a bug in
the Kernel, and not WindowServer).
2022-09-24 15:38:56 +01:00

592 lines
22 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Screen.h"
#include "Compositor.h"
#include "Event.h"
#include "EventLoop.h"
#include "ScreenBackend.h"
#include "VirtualScreenBackend.h"
#include "WindowManager.h"
#include <AK/Debug.h>
#include <AK/Format.h>
#include <Kernel/API/Graphics.h>
#include <Kernel/API/MousePacket.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
#include <unistd.h>
namespace WindowServer {
NonnullRefPtrVector<Screen, default_screen_count> Screen::s_screens;
Screen* Screen::s_main_screen { nullptr };
Gfx::IntRect Screen::s_bounding_screens_rect {};
ScreenLayout Screen::s_layout;
Vector<int, default_scale_factors_in_use_count> Screen::s_scale_factors_in_use;
struct FlushRectData {
Vector<FBRect, 32> pending_flush_rects;
bool too_many_pending_flush_rects { false };
};
ScreenInput& ScreenInput::the()
{
static ScreenInput s_the;
return s_the;
}
Screen& ScreenInput::cursor_location_screen()
{
auto* screen = Screen::find_by_location(m_cursor_location);
VERIFY(screen);
return *screen;
}
Screen const& ScreenInput::cursor_location_screen() const
{
auto* screen = Screen::find_by_location(m_cursor_location);
VERIFY(screen);
return *screen;
}
bool Screen::apply_layout(ScreenLayout&& screen_layout, String& error_msg)
{
if (!screen_layout.is_valid(&error_msg))
return false;
if (screen_layout == s_layout)
return true;
bool place_cursor_on_main_screen = find_by_location(ScreenInput::the().cursor_location()) == nullptr;
HashMap<size_t, size_t> current_to_new_indices_map;
HashMap<size_t, size_t> new_to_current_indices_map;
HashMap<size_t, NonnullRefPtr<Screen>> devices_no_longer_used;
for (size_t i = 0; i < s_layout.screens.size(); i++) {
auto& screen = s_layout.screens[i];
bool found = false;
for (size_t j = 0; j < screen_layout.screens.size(); j++) {
auto& new_screen = screen_layout.screens[j];
if (new_screen.device == screen.device) {
current_to_new_indices_map.set(i, j);
new_to_current_indices_map.set(j, i);
found = true;
break;
}
}
if (!found)
devices_no_longer_used.set(i, s_screens[i]);
}
HashMap<Screen*, size_t> screens_with_resolution_change;
HashMap<Screen*, size_t> screens_with_scale_change;
for (auto& it : current_to_new_indices_map) {
auto& screen = s_layout.screens[it.key];
auto& new_screen = screen_layout.screens[it.value];
if (screen.resolution != new_screen.resolution)
screens_with_resolution_change.set(&s_screens[it.key], it.value);
if (screen.scale_factor != new_screen.scale_factor)
screens_with_scale_change.set(&s_screens[it.key], it.value);
}
auto screens_backup = move(s_screens);
auto layout_backup = move(s_layout);
for (auto& it : screens_with_resolution_change) {
auto& existing_screen = *it.key;
dbgln("Closing device {} in preparation for resolution change", layout_backup.screens[existing_screen.index()].device.value_or("<virtual screen>"));
existing_screen.close_device();
}
AK::ArmedScopeGuard rollback([&] {
for (auto& screen : s_screens)
screen.close_device();
s_screens = move(screens_backup);
s_layout = move(layout_backup);
for (size_t i = 0; i < s_screens.size(); i++) {
auto& old_screen = s_screens[i];
// Restore the original screen index in case it changed
old_screen.set_index(i);
if (i == s_layout.main_screen_index)
old_screen.make_main_screen();
bool changed_scale = screens_with_scale_change.contains(&old_screen);
if (screens_with_resolution_change.contains(&old_screen)) {
if (old_screen.open_device()) {
// The resolution was changed, so we also implicitly applied the new scale factor
changed_scale = false;
} else {
// Don't set error_msg here, it should already be set
dbgln("Rolling back screen layout failed: could not open device");
}
}
old_screen.update_virtual_and_physical_rects();
if (changed_scale)
old_screen.scale_factor_changed();
}
update_bounding_rect();
});
s_layout = move(screen_layout);
for (size_t index = 0; index < s_layout.screens.size(); index++) {
Screen* screen;
bool need_to_open_device;
if (auto it = new_to_current_indices_map.find(index); it != new_to_current_indices_map.end()) {
// Re-use the existing screen instance
screen = &screens_backup[it->value];
s_screens.append(*screen);
screen->set_index(index);
need_to_open_device = screens_with_resolution_change.contains(screen);
} else {
screen = WindowServer::Screen::create(index);
if (!screen) {
error_msg = String::formatted("Error creating screen #{}", index);
return false;
}
need_to_open_device = false;
}
if (need_to_open_device && !screen->open_device()) {
error_msg = String::formatted("Error opening device for screen #{}", index);
return false;
}
screen->update_virtual_and_physical_rects();
if (!need_to_open_device && screens_with_scale_change.contains(screen))
screen->scale_factor_changed();
VERIFY(screen);
VERIFY(index == screen->index());
if (s_layout.main_screen_index == index)
screen->make_main_screen();
}
rollback.disarm();
if (place_cursor_on_main_screen) {
ScreenInput::the().set_cursor_location(Screen::main().rect().center());
} else {
auto cursor_location = ScreenInput::the().cursor_location();
if (!find_by_location(cursor_location)) {
// Cursor is off screen, try to find the closest location on another screen
float closest_distance = 0;
Optional<Gfx::IntPoint> closest_point;
for (auto& screen : s_screens) {
auto closest_point_on_screen_rect = screen.rect().closest_to(cursor_location);
auto distance = closest_point_on_screen_rect.distance_from(cursor_location);
if (!closest_point.has_value() || distance < closest_distance) {
closest_distance = distance;
closest_point = closest_point_on_screen_rect;
}
}
ScreenInput::the().set_cursor_location(closest_point.value()); // We should always have one
}
}
update_bounding_rect();
update_scale_factors_in_use();
return true;
}
void Screen::update_scale_factors_in_use()
{
s_scale_factors_in_use.clear();
for_each([&](auto& screen) {
auto scale_factor = screen.scale_factor();
// The This doesn't have to be extremely efficient as this
// code is only run when we start up or the screen configuration
// changes. But using a vector allows for efficient iteration,
// which is the most common use case.
if (!s_scale_factors_in_use.contains_slow(scale_factor))
s_scale_factors_in_use.append(scale_factor);
return IterationDecision::Continue;
});
}
Screen::Screen(size_t screen_index)
: m_index(screen_index)
, m_flush_rects(adopt_own(*new FlushRectData()))
, m_compositor_screen_data(Compositor::create_screen_data({}))
{
update_virtual_and_physical_rects();
open_device();
}
Screen::~Screen()
{
close_device();
}
bool Screen::open_device()
{
close_device();
auto& info = screen_layout_info();
switch (info.mode) {
case ScreenLayout::Screen::Mode::Device: {
m_backend = make<HardwareScreenBackend>(info.device.value());
auto return_value = m_backend->open();
if (return_value.is_error()) {
dbgln("Screen #{}: Failed to open backend: {}", index(), return_value.error());
return false;
}
set_resolution(true);
return true;
}
case ScreenLayout::Screen::Mode::Virtual: {
m_backend = make<VirtualScreenBackend>();
// Virtual device open should never fail.
MUST(m_backend->open());
set_resolution(true);
return true;
}
default:
dbgln("Unsupported screen type {}", ScreenLayout::Screen::mode_to_string(info.mode));
return false;
}
}
void Screen::close_device()
{
m_backend = nullptr;
}
void Screen::update_virtual_and_physical_rects()
{
auto& screen_info = screen_layout_info();
m_virtual_rect = { screen_info.location, { screen_info.resolution.width() / screen_info.scale_factor, screen_info.resolution.height() / screen_info.scale_factor } };
m_physical_rect = { Gfx::IntPoint { 0, 0 }, { screen_info.resolution.width(), screen_info.resolution.height() } };
dbgln("update_virtual_and_physical_rects for screen #{}: {}", index(), m_virtual_rect);
}
void Screen::scale_factor_changed()
{
// Flush rects are affected by the screen factor
constrain_pending_flush_rects();
}
Screen& Screen::closest_to_rect(Gfx::IntRect const& rect)
{
Screen* best_screen = nullptr;
int best_area = 0;
for (auto& screen : s_screens) {
auto r = screen.rect().intersected(rect);
int area = r.width() * r.height();
if (!best_screen || area > best_area) {
best_screen = &screen;
best_area = area;
}
}
if (!best_screen) {
// TODO: try to find the best screen in close proximity
best_screen = &Screen::main();
}
return *best_screen;
}
Screen& Screen::closest_to_location(Gfx::IntPoint const& point)
{
for (auto& screen : s_screens) {
if (screen.rect().contains(point))
return screen;
}
// TODO: guess based on how close the point is to the next screen rectangle
return Screen::main();
}
void Screen::update_bounding_rect()
{
if (!s_screens.is_empty()) {
s_bounding_screens_rect = s_screens[0].rect();
for (size_t i = 1; i < s_screens.size(); i++)
s_bounding_screens_rect = s_bounding_screens_rect.united(s_screens[i].rect());
} else {
s_bounding_screens_rect = {};
}
}
bool Screen::set_resolution(bool initial)
{
// Remember the screen that the cursor is on. Make sure it stays on the same screen if we change its resolution...
Screen* screen_with_cursor = nullptr;
if (!initial)
screen_with_cursor = &ScreenInput::the().cursor_location_screen();
auto& info = screen_layout_info();
ErrorOr<void> return_value = Error::from_errno(EINVAL);
{
GraphicsHeadModeSetting requested_mode_setting;
memset(&requested_mode_setting, 0, sizeof(GraphicsHeadModeSetting));
requested_mode_setting.horizontal_stride = info.resolution.width() * 4;
requested_mode_setting.pixel_clock_in_khz = 0;
requested_mode_setting.horizontal_active = info.resolution.width();
requested_mode_setting.horizontal_front_porch_pixels = 0;
requested_mode_setting.horizontal_sync_time_pixels = 0;
requested_mode_setting.horizontal_blank_pixels = 0;
requested_mode_setting.vertical_active = info.resolution.height();
requested_mode_setting.vertical_front_porch_lines = 0;
requested_mode_setting.vertical_sync_time_lines = 0;
requested_mode_setting.vertical_blank_lines = 0;
requested_mode_setting.horizontal_offset = 0;
requested_mode_setting.vertical_offset = 0;
return_value = m_backend->set_head_mode_setting(requested_mode_setting);
}
dbgln_if(WSSCREEN_DEBUG, "Screen #{}: fb_set_resolution() - success", index());
auto on_change_resolution = [&]() -> ErrorOr<void> {
if (initial) {
TRY(m_backend->unmap_framebuffer());
TRY(m_backend->map_framebuffer());
}
auto mode_setting = TRY(m_backend->get_head_mode_setting());
info.resolution = { mode_setting.horizontal_active, mode_setting.vertical_active };
update_virtual_and_physical_rects();
// Since pending flush rects are affected by the scale factor
// update even if only the scale factor changed
constrain_pending_flush_rects();
if (this == screen_with_cursor) {
auto& screen_input = ScreenInput::the();
screen_input.set_cursor_location(screen_input.cursor_location().constrained(rect()));
}
return {};
};
if (!return_value.is_error()) {
return_value = on_change_resolution();
if (!return_value.is_error())
return true;
}
if (return_value.is_error() && return_value.error() != Error::from_errno(EOVERFLOW)) {
dbgln("Screen #{}: Failed to set resolution {}: {}", index(), info.resolution, return_value.error());
MUST(on_change_resolution());
return false;
}
dbgln("Screen #{}: Failed to set resolution {}: {}, falling back to safe resolution", index(), info.resolution, return_value.error());
MUST(m_backend->set_safe_head_mode_setting());
MUST(on_change_resolution());
return false;
}
void Screen::set_buffer(int index)
{
m_backend->set_head_buffer(index);
}
size_t Screen::buffer_offset(int index) const
{
if (index == 0)
return 0;
if (index == 1)
return m_backend->m_back_buffer_offset;
VERIFY_NOT_REACHED();
}
void ScreenInput::set_acceleration_factor(double factor)
{
VERIFY(factor >= mouse_accel_min && factor <= mouse_accel_max);
m_acceleration_factor = factor;
}
void ScreenInput::set_scroll_step_size(unsigned step_size)
{
VERIFY(step_size >= scroll_step_size_min);
m_scroll_step_size = step_size;
}
void ScreenInput::on_receive_mouse_data(MousePacket const& packet)
{
auto& current_screen = cursor_location_screen();
auto prev_location = m_cursor_location;
if (packet.is_relative) {
m_cursor_location.translate_by(packet.x * m_acceleration_factor, packet.y * m_acceleration_factor);
dbgln_if(WSSCREEN_DEBUG, "Screen: New Relative mouse point @ {}", m_cursor_location);
} else {
m_cursor_location = { packet.x * current_screen.width() / 0xffff, packet.y * current_screen.height() / 0xffff };
dbgln_if(WSSCREEN_DEBUG, "Screen: New Absolute mouse point @ {}", m_cursor_location);
}
auto* moved_to_screen = Screen::find_by_location(m_cursor_location);
if (!moved_to_screen) {
m_cursor_location = m_cursor_location.constrained(current_screen.rect());
moved_to_screen = &current_screen;
}
unsigned buttons = packet.buttons;
unsigned prev_buttons = m_mouse_button_state;
m_mouse_button_state = buttons;
unsigned changed_buttons = prev_buttons ^ buttons;
auto post_mousedown_or_mouseup_if_needed = [&](MouseButton button) {
if (!(changed_buttons & (unsigned)button))
return;
auto message = make<MouseEvent>(buttons & (unsigned)button ? Event::MouseDown : Event::MouseUp, m_cursor_location, buttons, button, m_modifiers);
Core::EventLoop::current().post_event(WindowManager::the(), move(message));
};
post_mousedown_or_mouseup_if_needed(MouseButton::Primary);
post_mousedown_or_mouseup_if_needed(MouseButton::Secondary);
post_mousedown_or_mouseup_if_needed(MouseButton::Middle);
post_mousedown_or_mouseup_if_needed(MouseButton::Backward);
post_mousedown_or_mouseup_if_needed(MouseButton::Forward);
if (m_cursor_location != prev_location) {
auto message = make<MouseEvent>(Event::MouseMove, m_cursor_location, buttons, MouseButton::None, m_modifiers);
if (WindowManager::the().dnd_client())
message->set_mime_data(WindowManager::the().dnd_mime_data());
Core::EventLoop::current().post_event(WindowManager::the(), move(message));
}
if (packet.z || packet.w) {
auto message = make<MouseEvent>(Event::MouseWheel, m_cursor_location, buttons, MouseButton::None, m_modifiers, packet.w * m_scroll_step_size, packet.z * m_scroll_step_size, packet.w, packet.z);
Core::EventLoop::current().post_event(WindowManager::the(), move(message));
}
if (m_cursor_location != prev_location)
Compositor::the().invalidate_cursor();
}
void ScreenInput::on_receive_keyboard_data(::KeyEvent kernel_event)
{
m_modifiers = kernel_event.modifiers();
auto message = make<KeyEvent>(kernel_event.is_press() ? Event::KeyDown : Event::KeyUp, kernel_event.key, kernel_event.code_point, kernel_event.modifiers(), kernel_event.scancode);
Core::EventLoop::current().post_event(WindowManager::the(), move(message));
}
void Screen::constrain_pending_flush_rects()
{
auto& flush_rects = *m_flush_rects;
if (flush_rects.pending_flush_rects.is_empty())
return;
Gfx::IntRect screen_rect({}, rect().size());
Gfx::DisjointRectSet rects;
for (auto& fb_rect : flush_rects.pending_flush_rects) {
Gfx::IntRect rect { (int)fb_rect.x, (int)fb_rect.y, (int)fb_rect.width, (int)fb_rect.height };
auto intersected_rect = rect.intersected(screen_rect);
if (!intersected_rect.is_empty())
rects.add(intersected_rect);
}
flush_rects.pending_flush_rects.clear_with_capacity();
for (auto const& rect : rects.rects()) {
flush_rects.pending_flush_rects.append({
.head_index = 0,
.x = (unsigned)rect.x(),
.y = (unsigned)rect.y(),
.width = (unsigned)rect.width(),
.height = (unsigned)rect.height(),
});
}
}
void Screen::queue_flush_display_rect(Gfx::IntRect const& flush_region)
{
// NOTE: we don't scale until in Screen::flush_display so that when
// there are too many rectangles that we end up throwing away, we didn't
// waste accounting for scale factor!
auto& flush_rects = *m_flush_rects;
if (flush_rects.too_many_pending_flush_rects) {
// We already have too many, just make sure we extend it if needed
VERIFY(!flush_rects.pending_flush_rects.is_empty());
if (flush_rects.pending_flush_rects.size() == 1) {
auto& union_rect = flush_rects.pending_flush_rects[0];
auto new_union = flush_region.united(Gfx::IntRect((int)union_rect.x, (int)union_rect.y, (int)union_rect.width, (int)union_rect.height));
union_rect.x = new_union.left();
union_rect.y = new_union.top();
union_rect.width = new_union.width();
union_rect.height = new_union.height();
} else {
// Convert all the rectangles into one union
auto new_union = flush_region;
for (auto& flush_rect : flush_rects.pending_flush_rects)
new_union = new_union.united(Gfx::IntRect((int)flush_rect.x, (int)flush_rect.y, (int)flush_rect.width, (int)flush_rect.height));
flush_rects.pending_flush_rects.resize(1, true);
auto& union_rect = flush_rects.pending_flush_rects[0];
union_rect.x = new_union.left();
union_rect.y = new_union.top();
union_rect.width = new_union.width();
union_rect.height = new_union.height();
}
return;
}
VERIFY(flush_rects.pending_flush_rects.size() < flush_rects.pending_flush_rects.capacity());
flush_rects.pending_flush_rects.append({ 0,
(unsigned)flush_region.left(),
(unsigned)flush_region.top(),
(unsigned)flush_region.width(),
(unsigned)flush_region.height() });
if (flush_rects.pending_flush_rects.size() == flush_rects.pending_flush_rects.capacity()) {
// If we get one more rectangle then we need to convert it to a single union rectangle
flush_rects.too_many_pending_flush_rects = true;
}
}
void Screen::flush_display(int buffer_index)
{
VERIFY(m_backend->m_can_device_flush_buffers || m_backend->m_can_device_flush_entire_framebuffer);
auto& flush_rects = *m_flush_rects;
if (flush_rects.pending_flush_rects.is_empty())
return;
// Now that we have a final set of rects, apply the scale factor
auto scale_factor = this->scale_factor();
for (auto& flush_rect : flush_rects.pending_flush_rects) {
VERIFY(Gfx::IntRect({}, m_virtual_rect.size()).contains({ (int)flush_rect.x, (int)flush_rect.y, (int)flush_rect.width, (int)flush_rect.height }));
flush_rect.x *= scale_factor;
flush_rect.y *= scale_factor;
flush_rect.width *= scale_factor;
flush_rect.height *= scale_factor;
}
if (m_backend->m_can_device_flush_entire_framebuffer) {
auto return_value = m_backend->flush_framebuffer();
if (return_value.is_error())
dbgln("Screen #{}: Error flushing display: {}", index(), return_value.error());
} else {
auto return_value = m_backend->flush_framebuffer_rects(buffer_index, flush_rects.pending_flush_rects.span());
if (return_value.is_error())
dbgln("Screen #{}: Error flushing display: {}", index(), return_value.error());
}
flush_rects.too_many_pending_flush_rects = false;
flush_rects.pending_flush_rects.clear_with_capacity();
}
void Screen::flush_display_entire_framebuffer()
{
VERIFY(m_backend->m_can_device_flush_entire_framebuffer);
auto return_value = m_backend->flush_framebuffer();
if (return_value.is_error())
dbgln("Screen #{}: Error flushing display front buffer: {}", index(), return_value.error());
}
void Screen::flush_display_front_buffer(int front_buffer_index, Gfx::IntRect& rect)
{
VERIFY(m_backend->m_can_device_flush_buffers);
auto scale_factor = this->scale_factor();
FBRect flush_rect {
.head_index = 0,
.x = (unsigned)(rect.x() * scale_factor),
.y = (unsigned)(rect.y() * scale_factor),
.width = (unsigned)(rect.width() * scale_factor),
.height = (unsigned)(rect.height() * scale_factor)
};
VERIFY(Gfx::IntRect({}, m_virtual_rect.size()).contains(rect));
auto return_value = m_backend->flush_framebuffer_rects(front_buffer_index, { &flush_rect, 1 });
if (return_value.is_error())
dbgln("Screen #{}: Error flushing display front buffer: {}", index(), return_value.error());
}
}