ladybird/Userland/Libraries/LibWeb/Crypto/Crypto.cpp
Shannon Booth bad44f8fc9 LibWeb: Remove Bindings/Forward.h from LibWeb/Forward.h
This was resulting in a whole lot of rebuilding whenever a new IDL
interface was added.

Instead, just directly include the prototype in every C++ file which
needs it. While we only really need a forward declaration in each cpp
file; including the full prototype header (which itself only includes
LibJS/Object.h, which is already transitively brought in by
PlatformObject) - it seems like a small price to pay compared to what
feels like a full rebuild of LibWeb whenever a new IDL file is added.

Given all of these includes are only needed for the ::initialize
method, there is probably a smart way of avoiding this problem
altogether. I've considered both using some macro trickery or generating
these functions somehow instead.
2024-04-27 18:29:35 -04:00

141 lines
5.1 KiB
C++

/*
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
* Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Random.h>
#include <AK/StringBuilder.h>
#include <LibJS/Runtime/TypedArray.h>
#include <LibWeb/Bindings/CryptoPrototype.h>
#include <LibWeb/Bindings/ExceptionOrUtils.h>
#include <LibWeb/Bindings/Intrinsics.h>
#include <LibWeb/Crypto/Crypto.h>
#include <LibWeb/Crypto/SubtleCrypto.h>
#include <LibWeb/WebIDL/Buffers.h>
namespace Web::Crypto {
JS_DEFINE_ALLOCATOR(Crypto);
JS::NonnullGCPtr<Crypto> Crypto::create(JS::Realm& realm)
{
return realm.heap().allocate<Crypto>(realm, realm);
}
Crypto::Crypto(JS::Realm& realm)
: PlatformObject(realm)
{
}
Crypto::~Crypto() = default;
void Crypto::initialize(JS::Realm& realm)
{
Base::initialize(realm);
WEB_SET_PROTOTYPE_FOR_INTERFACE(Crypto);
m_subtle = SubtleCrypto::create(realm);
}
JS::NonnullGCPtr<SubtleCrypto> Crypto::subtle() const
{
return *m_subtle;
}
// https://w3c.github.io/webcrypto/#dfn-Crypto-method-getRandomValues
WebIDL::ExceptionOr<JS::Handle<WebIDL::ArrayBufferView>> Crypto::get_random_values(JS::Handle<WebIDL::ArrayBufferView> array) const
{
// 1. If array is not an Int8Array, Uint8Array, Uint8ClampedArray, Int16Array, Uint16Array, Int32Array, Uint32Array, BigInt64Array, or BigUint64Array, then throw a TypeMismatchError and terminate the algorithm.
if (!array->is_typed_array_base())
return WebIDL::TypeMismatchError::create(realm(), "array must be one of Int8Array, Uint8Array, Uint8ClampedArray, Int16Array, Uint16Array, Int32Array, Uint32Array, BigInt64Array, or BigUint64Array"_fly_string);
auto const& typed_array = *array->bufferable_object().get<JS::NonnullGCPtr<JS::TypedArrayBase>>();
auto typed_array_record = JS::make_typed_array_with_buffer_witness_record(typed_array, JS::ArrayBuffer::Order::SeqCst);
// IMPLEMENTATION DEFINED: If the viewed array buffer is out-of-bounds, throw a InvalidStateError and terminate the algorithm.
if (JS::is_typed_array_out_of_bounds(typed_array_record))
return WebIDL::InvalidStateError::create(realm(), MUST(String::formatted(JS::ErrorType::BufferOutOfBounds.message(), "TypedArray"sv)));
// 2. If the byteLength of array is greater than 65536, throw a QuotaExceededError and terminate the algorithm.
if (JS::typed_array_byte_length(typed_array_record) > 65536)
return WebIDL::QuotaExceededError::create(realm(), "array's byteLength may not be greater than 65536"_fly_string);
// FIXME: Handle SharedArrayBuffers
// 3. Overwrite all elements of array with cryptographically strong random values of the appropriate type.
fill_with_random(array->viewed_array_buffer()->buffer());
// 4. Return array.
return array;
}
// https://w3c.github.io/webcrypto/#dfn-Crypto-method-randomUUID
WebIDL::ExceptionOr<String> Crypto::random_uuid() const
{
auto& vm = realm().vm();
return TRY_OR_THROW_OOM(vm, generate_random_uuid());
}
void Crypto::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_subtle);
}
// https://w3c.github.io/webcrypto/#dfn-generate-a-random-uuid
ErrorOr<String> generate_random_uuid()
{
// 1. Let bytes be a byte sequence of length 16.
u8 bytes[16];
// 2. Fill bytes with cryptographically secure random bytes.
fill_with_random(bytes);
// 3. Set the 4 most significant bits of bytes[6], which represent the UUID version, to 0100.
bytes[6] &= ~(1 << 7);
bytes[6] |= 1 << 6;
bytes[6] &= ~(1 << 5);
bytes[6] &= ~(1 << 4);
// 4. Set the 2 most significant bits of bytes[8], which represent the UUID variant, to 10.
bytes[8] |= 1 << 7;
bytes[8] &= ~(1 << 6);
/* 5. Return the string concatenation of
«
hexadecimal representation of bytes[0],
hexadecimal representation of bytes[1],
hexadecimal representation of bytes[2],
hexadecimal representation of bytes[3],
"-",
hexadecimal representation of bytes[4],
hexadecimal representation of bytes[5],
"-",
hexadecimal representation of bytes[6],
hexadecimal representation of bytes[7],
"-",
hexadecimal representation of bytes[8],
hexadecimal representation of bytes[9],
"-",
hexadecimal representation of bytes[10],
hexadecimal representation of bytes[11],
hexadecimal representation of bytes[12],
hexadecimal representation of bytes[13],
hexadecimal representation of bytes[14],
hexadecimal representation of bytes[15]
».
*/
StringBuilder builder;
TRY(builder.try_appendff("{:02x}{:02x}{:02x}{:02x}-", bytes[0], bytes[1], bytes[2], bytes[3]));
TRY(builder.try_appendff("{:02x}{:02x}-", bytes[4], bytes[5]));
TRY(builder.try_appendff("{:02x}{:02x}-", bytes[6], bytes[7]));
TRY(builder.try_appendff("{:02x}{:02x}-", bytes[8], bytes[9]));
TRY(builder.try_appendff("{:02x}{:02x}{:02x}{:02x}{:02x}{:02x}", bytes[10], bytes[11], bytes[12], bytes[13], bytes[14], bytes[15]));
return builder.to_string();
}
}