ladybird/Userland/Libraries/LibWeb/Crypto/CryptoAlgorithms.cpp
2024-04-07 07:03:13 +02:00

1446 lines
73 KiB
C++

/*
* Copyright (c) 2024, Andrew Kaster <akaster@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Base64.h>
#include <AK/QuickSort.h>
#include <LibCrypto/ASN1/DER.h>
#include <LibCrypto/Authentication/HMAC.h>
#include <LibCrypto/Curves/Ed25519.h>
#include <LibCrypto/Curves/SECPxxxr1.h>
#include <LibCrypto/Hash/HashManager.h>
#include <LibCrypto/Hash/PBKDF2.h>
#include <LibCrypto/Hash/SHA1.h>
#include <LibCrypto/Hash/SHA2.h>
#include <LibCrypto/PK/RSA.h>
#include <LibJS/Runtime/ArrayBuffer.h>
#include <LibJS/Runtime/DataView.h>
#include <LibJS/Runtime/TypedArray.h>
#include <LibTLS/Certificate.h>
#include <LibWeb/Crypto/CryptoAlgorithms.h>
#include <LibWeb/Crypto/KeyAlgorithms.h>
#include <LibWeb/Crypto/SubtleCrypto.h>
#include <LibWeb/WebIDL/AbstractOperations.h>
namespace Web::Crypto {
// https://w3c.github.io/webcrypto/#concept-usage-intersection
static Vector<Bindings::KeyUsage> usage_intersection(ReadonlySpan<Bindings::KeyUsage> a, ReadonlySpan<Bindings::KeyUsage> b)
{
Vector<Bindings::KeyUsage> result;
for (auto const& usage : a) {
if (b.contains_slow(usage))
result.append(usage);
}
quick_sort(result);
return result;
}
// Out of line to ensure this class has a key function
AlgorithmMethods::~AlgorithmMethods() = default;
// https://w3c.github.io/webcrypto/#big-integer
static ::Crypto::UnsignedBigInteger big_integer_from_api_big_integer(JS::GCPtr<JS::Uint8Array> const& big_integer)
{
static_assert(AK::HostIsLittleEndian, "This method needs special treatment for BE");
// The BigInteger typedef is a Uint8Array that holds an arbitrary magnitude unsigned integer
// **in big-endian order**. Values read from the API SHALL have minimal typed array length
// (that is, at most 7 leading zero bits, except the value 0 which shall have length 8 bits).
// The API SHALL accept values with any number of leading zero bits, including the empty array, which represents zero.
auto const& buffer = big_integer->viewed_array_buffer()->buffer();
::Crypto::UnsignedBigInteger result(0);
if (buffer.size() > 0) {
// We need to reverse the buffer to get it into little-endian order
Vector<u8, 32> reversed_buffer;
reversed_buffer.resize(buffer.size());
for (size_t i = 0; i < buffer.size(); ++i) {
reversed_buffer[buffer.size() - i - 1] = buffer[i];
}
result = ::Crypto::UnsignedBigInteger::import_data(reversed_buffer.data(), reversed_buffer.size());
}
return result;
}
// https://www.rfc-editor.org/rfc/rfc7518#section-2
ErrorOr<String> base64_url_uint_encode(::Crypto::UnsignedBigInteger integer)
{
static_assert(AK::HostIsLittleEndian, "This code assumes little-endian");
// The representation of a positive or zero integer value as the
// base64url encoding of the value's unsigned big-endian
// representation as an octet sequence. The octet sequence MUST
// utilize the minimum number of octets needed to represent the
// value. Zero is represented as BASE64URL(single zero-valued
// octet), which is "AA".
auto bytes = TRY(ByteBuffer::create_uninitialized(integer.trimmed_byte_length()));
bool const remove_leading_zeroes = true;
auto data_size = integer.export_data(bytes.span(), remove_leading_zeroes);
auto data_slice = bytes.bytes().slice(bytes.size() - data_size, data_size);
// We need to encode the integer's big endian representation as a base64 string
Vector<u8, 32> byte_swapped_data;
byte_swapped_data.ensure_capacity(data_size);
for (size_t i = 0; i < data_size; ++i)
byte_swapped_data.append(data_slice[data_size - i - 1]);
auto encoded = TRY(encode_base64url(byte_swapped_data));
// FIXME: create a version of encode_base64url that omits padding bytes
if (auto first_padding_byte = encoded.find_byte_offset('='); first_padding_byte.has_value())
return encoded.substring_from_byte_offset(0, first_padding_byte.value());
return encoded;
}
WebIDL::ExceptionOr<::Crypto::UnsignedBigInteger> base64_url_uint_decode(JS::Realm& realm, String const& base64_url_string)
{
auto& vm = realm.vm();
static_assert(AK::HostIsLittleEndian, "This code assumes little-endian");
// FIXME: Create a version of decode_base64url that ignores padding inconsistencies
auto padded_string = base64_url_string;
if (padded_string.byte_count() % 4 != 0) {
padded_string = TRY_OR_THROW_OOM(vm, String::formatted("{}{}", padded_string, TRY_OR_THROW_OOM(vm, String::repeated('=', 4 - (padded_string.byte_count() % 4)))));
}
auto base64_bytes_or_error = decode_base64url(padded_string);
if (base64_bytes_or_error.is_error()) {
if (base64_bytes_or_error.error().code() == ENOMEM)
return vm.throw_completion<JS::InternalError>(vm.error_message(::JS::VM::ErrorMessage::OutOfMemory));
return WebIDL::DataError::create(realm, MUST(String::formatted("base64 decode: {}", base64_bytes_or_error.release_error())));
}
auto base64_bytes = base64_bytes_or_error.release_value();
// We need to swap the integer's big-endian representation to little endian in order to import it
Vector<u8, 32> byte_swapped_data;
byte_swapped_data.ensure_capacity(base64_bytes.size());
for (size_t i = 0; i < base64_bytes.size(); ++i)
byte_swapped_data.append(base64_bytes[base64_bytes.size() - i - 1]);
return ::Crypto::UnsignedBigInteger::import_data(byte_swapped_data.data(), byte_swapped_data.size());
}
// https://w3c.github.io/webcrypto/#concept-parse-an-asn1-structure
template<typename Structure>
static WebIDL::ExceptionOr<Structure> parse_an_ASN1_structure(JS::Realm& realm, ReadonlyBytes data, bool exact_data = true)
{
// 1. Let data be a sequence of bytes to be parsed.
// 2. Let structure be the ASN.1 structure to be parsed.
// 3. Let exactData be an optional boolean value. If it is not supplied, let it be initialized to true.
// 4. Parse data according to the Distinguished Encoding Rules of [X690], using structure as the ASN.1 structure to be decoded.
::Crypto::ASN1::Decoder decoder(data);
Structure structure;
if constexpr (IsSame<Structure, TLS::SubjectPublicKey>) {
auto maybe_subject_public_key = TLS::parse_subject_public_key_info(decoder);
if (maybe_subject_public_key.is_error())
return WebIDL::DataError::create(realm, MUST(String::formatted("Error parsing subjectPublicKeyInfo: {}", maybe_subject_public_key.release_error())));
structure = maybe_subject_public_key.release_value();
} else if constexpr (IsSame<Structure, TLS::PrivateKey>) {
auto maybe_private_key = TLS::parse_private_key_info(decoder);
if (maybe_private_key.is_error())
return WebIDL::DataError::create(realm, MUST(String::formatted("Error parsing privateKeyInfo: {}", maybe_private_key.release_error())));
structure = maybe_private_key.release_value();
} else {
static_assert(DependentFalse<Structure>, "Don't know how to parse ASN.1 structure type");
}
// 5. If exactData was specified, and all of the bytes of data were not consumed during the parsing phase, then throw a DataError.
if (exact_data && !decoder.eof())
return WebIDL::DataError::create(realm, "Not all bytes were consumed during the parsing phase"_fly_string);
// 6. Return the parsed ASN.1 structure.
return structure;
}
// https://w3c.github.io/webcrypto/#concept-parse-a-spki
static WebIDL::ExceptionOr<TLS::SubjectPublicKey> parse_a_subject_public_key_info(JS::Realm& realm, ReadonlyBytes bytes)
{
// When this specification says to parse a subjectPublicKeyInfo, the user agent must parse an ASN.1 structure,
// with data set to the sequence of bytes to be parsed, structure as the ASN.1 structure of subjectPublicKeyInfo,
// as specified in [RFC5280], and exactData set to true.
return parse_an_ASN1_structure<TLS::SubjectPublicKey>(realm, bytes, true);
}
// https://w3c.github.io/webcrypto/#concept-parse-a-privateKeyInfo
static WebIDL::ExceptionOr<TLS::PrivateKey> parse_a_private_key_info(JS::Realm& realm, ReadonlyBytes bytes)
{
// When this specification says to parse a PrivateKeyInfo, the user agent must parse an ASN.1 structure
// with data set to the sequence of bytes to be parsed, structure as the ASN.1 structure of PrivateKeyInfo,
// as specified in [RFC5208], and exactData set to true.
return parse_an_ASN1_structure<TLS::PrivateKey>(realm, bytes, true);
}
static WebIDL::ExceptionOr<::Crypto::PK::RSAPrivateKey<>> parse_jwk_rsa_private_key(JS::Realm& realm, Bindings::JsonWebKey const& jwk)
{
auto n = TRY(base64_url_uint_decode(realm, *jwk.n));
auto d = TRY(base64_url_uint_decode(realm, *jwk.d));
auto e = TRY(base64_url_uint_decode(realm, *jwk.e));
// We know that if any of the extra parameters are provided, all of them must be
if (!jwk.p.has_value())
return ::Crypto::PK::RSAPrivateKey<>(move(n), move(d), move(e), 0, 0);
auto p = TRY(base64_url_uint_decode(realm, *jwk.p));
auto q = TRY(base64_url_uint_decode(realm, *jwk.q));
auto dp = TRY(base64_url_uint_decode(realm, *jwk.dp));
auto dq = TRY(base64_url_uint_decode(realm, *jwk.dq));
auto qi = TRY(base64_url_uint_decode(realm, *jwk.qi));
return ::Crypto::PK::RSAPrivateKey<>(move(n), move(d), move(e), move(p), move(q), move(dp), move(dq), move(qi));
}
static WebIDL::ExceptionOr<::Crypto::PK::RSAPublicKey<>> parse_jwk_rsa_public_key(JS::Realm& realm, Bindings::JsonWebKey const& jwk)
{
auto e = TRY(base64_url_uint_decode(realm, *jwk.e));
auto n = TRY(base64_url_uint_decode(realm, *jwk.n));
return ::Crypto::PK::RSAPublicKey<>(move(n), move(e));
}
AlgorithmParams::~AlgorithmParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> AlgorithmParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name = TRY(object.get("name"));
auto name_string = TRY(name.to_string(vm));
return adopt_own(*new AlgorithmParams { name_string });
}
PBKDF2Params::~PBKDF2Params() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> PBKDF2Params::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto salt_value = TRY(object.get("salt"));
if (!salt_value.is_object() || !(is<JS::TypedArrayBase>(salt_value.as_object()) || is<JS::ArrayBuffer>(salt_value.as_object()) || is<JS::DataView>(salt_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
auto salt = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(salt_value.as_object()));
auto iterations_value = TRY(object.get("iterations"));
auto iterations = TRY(iterations_value.to_u32(vm));
auto hash_value = TRY(object.get("hash"));
auto hash = TRY(hash_value.to_string(vm));
return adopt_own<AlgorithmParams>(*new PBKDF2Params { name, salt, iterations, hash });
}
RsaKeyGenParams::~RsaKeyGenParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaKeyGenParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto modulus_length_value = TRY(object.get("modulusLength"));
auto modulus_length = TRY(modulus_length_value.to_u32(vm));
auto public_exponent_value = TRY(object.get("publicExponent"));
JS::GCPtr<JS::Uint8Array> public_exponent;
if (!public_exponent_value.is_object() || !is<JS::Uint8Array>(public_exponent_value.as_object()))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "Uint8Array");
public_exponent = static_cast<JS::Uint8Array&>(public_exponent_value.as_object());
return adopt_own<AlgorithmParams>(*new RsaKeyGenParams { name, modulus_length, big_integer_from_api_big_integer(public_exponent) });
}
RsaHashedKeyGenParams::~RsaHashedKeyGenParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaHashedKeyGenParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto modulus_length_value = TRY(object.get("modulusLength"));
auto modulus_length = TRY(modulus_length_value.to_u32(vm));
auto public_exponent_value = TRY(object.get("publicExponent"));
JS::GCPtr<JS::Uint8Array> public_exponent;
if (!public_exponent_value.is_object() || !is<JS::Uint8Array>(public_exponent_value.as_object()))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "Uint8Array");
public_exponent = static_cast<JS::Uint8Array&>(public_exponent_value.as_object());
auto hash_value = TRY(object.get("hash"));
auto hash = Variant<Empty, HashAlgorithmIdentifier> { Empty {} };
if (hash_value.is_string()) {
auto hash_string = TRY(hash_value.to_string(vm));
hash = HashAlgorithmIdentifier { hash_string };
} else {
auto hash_object = TRY(hash_value.to_object(vm));
hash = HashAlgorithmIdentifier { hash_object };
}
return adopt_own<AlgorithmParams>(*new RsaHashedKeyGenParams { name, modulus_length, big_integer_from_api_big_integer(public_exponent), hash.get<HashAlgorithmIdentifier>() });
}
RsaHashedImportParams::~RsaHashedImportParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaHashedImportParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto hash_value = TRY(object.get("hash"));
auto hash = Variant<Empty, HashAlgorithmIdentifier> { Empty {} };
if (hash_value.is_string()) {
auto hash_string = TRY(hash_value.to_string(vm));
hash = HashAlgorithmIdentifier { hash_string };
} else {
auto hash_object = TRY(hash_value.to_object(vm));
hash = HashAlgorithmIdentifier { hash_object };
}
return adopt_own<AlgorithmParams>(*new RsaHashedImportParams { name, hash.get<HashAlgorithmIdentifier>() });
}
RsaOaepParams::~RsaOaepParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaOaepParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto label_value = TRY(object.get("label"));
ByteBuffer label;
if (!label_value.is_nullish()) {
if (!label_value.is_object() || !(is<JS::TypedArrayBase>(label_value.as_object()) || is<JS::ArrayBuffer>(label_value.as_object()) || is<JS::DataView>(label_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
label = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(label_value.as_object()));
}
return adopt_own<AlgorithmParams>(*new RsaOaepParams { name, move(label) });
}
EcdsaParams::~EcdsaParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> EcdsaParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto hash_value = TRY(object.get("hash"));
auto hash = Variant<Empty, HashAlgorithmIdentifier> { Empty {} };
if (hash_value.is_string()) {
auto hash_string = TRY(hash_value.to_string(vm));
hash = HashAlgorithmIdentifier { hash_string };
} else {
auto hash_object = TRY(hash_value.to_object(vm));
hash = HashAlgorithmIdentifier { hash_object };
}
return adopt_own<AlgorithmParams>(*new EcdsaParams { name, hash.get<HashAlgorithmIdentifier>() });
}
EcKeyGenParams::~EcKeyGenParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> EcKeyGenParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto curve_value = TRY(object.get("namedCurve"));
auto curve = TRY(curve_value.to_string(vm));
return adopt_own<AlgorithmParams>(*new EcKeyGenParams { name, curve });
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> RSAOAEP::encrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& plaintext)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
auto const& normalized_algorithm = static_cast<RsaOaepParams const&>(params);
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(realm, "Key is not a public key"_fly_string);
// 2. Let label be the contents of the label member of normalizedAlgorithm or the empty octet string if the label member of normalizedAlgorithm is not present.
[[maybe_unused]] auto const& label = normalized_algorithm.label;
// 3. Perform the encryption operation defined in Section 7.1 of [RFC3447] with the key represented by key as the recipient's RSA public key,
// the contents of plaintext as the message to be encrypted, M and label as the label, L, and with the hash function specified by the hash attribute
// of the [[algorithm]] internal slot of key as the Hash option and MGF1 (defined in Section B.2.1 of [RFC3447]) as the MGF option.
// 4. If performing the operation results in an error, then throw an OperationError.
// 5. Let ciphertext be the value C that results from performing the operation.
// FIXME: Actually encrypt the data
auto ciphertext = TRY_OR_THROW_OOM(vm, ByteBuffer::copy(plaintext));
// 6. Return the result of creating an ArrayBuffer containing ciphertext.
return JS::ArrayBuffer::create(realm, move(ciphertext));
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> RSAOAEP::decrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, AK::ByteBuffer const& ciphertext)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
auto const& normalized_algorithm = static_cast<RsaOaepParams const&>(params);
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_fly_string);
// 2. Let label be the contents of the label member of normalizedAlgorithm or the empty octet string if the label member of normalizedAlgorithm is not present.
[[maybe_unused]] auto const& label = normalized_algorithm.label;
// 3. Perform the decryption operation defined in Section 7.1 of [RFC3447] with the key represented by key as the recipient's RSA private key,
// the contents of ciphertext as the ciphertext to be decrypted, C, and label as the label, L, and with the hash function specified by the hash attribute
// of the [[algorithm]] internal slot of key as the Hash option and MGF1 (defined in Section B.2.1 of [RFC3447]) as the MGF option.
// 4. If performing the operation results in an error, then throw an OperationError.
// 5. Let plaintext the value M that results from performing the operation.
// FIXME: Actually decrypt the data
auto plaintext = TRY_OR_THROW_OOM(vm, ByteBuffer::copy(ciphertext));
// 6. Return the result of creating an ArrayBuffer containing plaintext.
return JS::ArrayBuffer::create(realm, move(plaintext));
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> RSAOAEP::generate_key(AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains an entry which is not "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2. Generate an RSA key pair, as defined in [RFC3447], with RSA modulus length equal to the modulusLength member of normalizedAlgorithm
// and RSA public exponent equal to the publicExponent member of normalizedAlgorithm.
// 3. If performing the operation results in an error, then throw an OperationError.
auto const& normalized_algorithm = static_cast<RsaHashedKeyGenParams const&>(params);
auto key_pair = ::Crypto::PK::RSA::generate_key_pair(normalized_algorithm.modulus_length, normalized_algorithm.public_exponent);
// 4. Let algorithm be a new RsaHashedKeyAlgorithm object.
auto algorithm = RsaHashedKeyAlgorithm::create(m_realm);
// 5. Set the name attribute of algorithm to "RSA-OAEP".
algorithm->set_name("RSA-OAEP"_string);
// 6. Set the modulusLength attribute of algorithm to equal the modulusLength member of normalizedAlgorithm.
algorithm->set_modulus_length(normalized_algorithm.modulus_length);
// 7. Set the publicExponent attribute of algorithm to equal the publicExponent member of normalizedAlgorithm.
TRY(algorithm->set_public_exponent(normalized_algorithm.public_exponent));
// 8. Set the hash attribute of algorithm to equal the hash member of normalizedAlgorithm.
algorithm->set_hash(normalized_algorithm.hash);
// 9. Let publicKey be a new CryptoKey representing the public key of the generated key pair.
auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_pair.public_key });
// 10. Set the [[type]] internal slot of publicKey to "public"
public_key->set_type(Bindings::KeyType::Public);
// 11. Set the [[algorithm]] internal slot of publicKey to algorithm.
public_key->set_algorithm(algorithm);
// 12. Set the [[extractable]] internal slot of publicKey to true.
public_key->set_extractable(true);
// 13. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "encrypt", "wrapKey" ].
public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Encrypt, Bindings::KeyUsage::Wrapkey } }));
// 14. Let privateKey be a new CryptoKey representing the private key of the generated key pair.
auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_pair.private_key });
// 15. Set the [[type]] internal slot of privateKey to "private"
private_key->set_type(Bindings::KeyType::Private);
// 16. Set the [[algorithm]] internal slot of privateKey to algorithm.
private_key->set_algorithm(algorithm);
// 17. Set the [[extractable]] internal slot of privateKey to extractable.
private_key->set_extractable(extractable);
// 18. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "decrypt", "unwrapKey" ].
private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Decrypt, Bindings::KeyUsage::Unwrapkey } }));
// 19. Let result be a new CryptoKeyPair dictionary.
// 20. Set the publicKey attribute of result to be publicKey.
// 21. Set the privateKey attribute of result to be privateKey.
// 22. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL].
return Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>> { CryptoKeyPair::create(m_realm, public_key, private_key) };
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> RSAOAEP::import_key(Web::Crypto::AlgorithmParams const& params, Bindings::KeyFormat key_format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& usages)
{
auto& realm = *m_realm;
// 1. Let keyData be the key data to be imported.
JS::GCPtr<CryptoKey> key = nullptr;
auto const& normalized_algorithm = static_cast<RsaHashedImportParams const&>(params);
// 2. -> If format is "spki":
if (key_format == Bindings::KeyFormat::Spki) {
// 1. If usages contains an entry which is not "encrypt" or "wrapKey", then throw a SyntaxError.
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Wrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
VERIFY(key_data.has<ByteBuffer>());
// 2. Let spki be the result of running the parse a subjectPublicKeyInfo algorithm over keyData.
// 3. If an error occurred while parsing, then throw a DataError.
auto spki = TRY(parse_a_subject_public_key_info(m_realm, key_data.get<ByteBuffer>()));
// 4. If the algorithm object identifier field of the algorithm AlgorithmIdentifier field of spki
// is not equal to the rsaEncryption object identifier defined in [RFC3447], then throw a DataError.
if (spki.algorithm.identifier != TLS::rsa_encryption_oid)
return WebIDL::DataError::create(m_realm, "Algorithm object identifier is not the rsaEncryption object identifier"_fly_string);
// 5. Let publicKey be the result of performing the parse an ASN.1 structure algorithm,
// with data as the subjectPublicKeyInfo field of spki, structure as the RSAPublicKey structure
// specified in Section A.1.1 of [RFC3447], and exactData set to true.
// NOTE: We already did this in parse_a_subject_public_key_info
auto& public_key = spki.rsa;
// 6. If an error occurred while parsing, or it can be determined that publicKey is not
// a valid public key according to [RFC3447], then throw a DataError.
// FIXME: Validate the public key
// 7. Let key be a new CryptoKey that represents the RSA public key identified by publicKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key });
// 8. Set the [[type]] internal slot of key to "public"
key->set_type(Bindings::KeyType::Public);
}
// -> If format is "pkcs8":
else if (key_format == Bindings::KeyFormat::Pkcs8) {
// 1. If usages contains an entry which is not "decrypt" or "unwrapKey", then throw a SyntaxError.
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
VERIFY(key_data.has<ByteBuffer>());
// 2. Let privateKeyInfo be the result of running the parse a privateKeyInfo algorithm over keyData.
// 3. If an error occurred while parsing, then throw a DataError.
auto private_key_info = TRY(parse_a_private_key_info(m_realm, key_data.get<ByteBuffer>()));
// 4. If the algorithm object identifier field of the privateKeyAlgorithm PrivateKeyAlgorithm field of privateKeyInfo
// is not equal to the rsaEncryption object identifier defined in [RFC3447], then throw a DataError.
if (private_key_info.algorithm.identifier != TLS::rsa_encryption_oid)
return WebIDL::DataError::create(m_realm, "Algorithm object identifier is not the rsaEncryption object identifier"_fly_string);
// 5. Let rsaPrivateKey be the result of performing the parse an ASN.1 structure algorithm,
// with data as the privateKey field of privateKeyInfo, structure as the RSAPrivateKey structure
// specified in Section A.1.2 of [RFC3447], and exactData set to true.
// NOTE: We already did this in parse_a_private_key_info
auto& rsa_private_key = private_key_info.rsa;
// 6. If an error occurred while parsing, or if rsaPrivateKey is not
// a valid RSA private key according to [RFC3447], then throw a DataError.
// FIXME: Validate the private key
// 7. Let key be a new CryptoKey that represents the RSA private key identified by rsaPrivateKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { rsa_private_key });
// 8. Set the [[type]] internal slot of key to "private"
key->set_type(Bindings::KeyType::Private);
}
// -> If format is "jwk":
else if (key_format == Bindings::KeyFormat::Jwk) {
// 1. -> If keyData is a JsonWebKey dictionary:
// Let jwk equal keyData.
// -> Otherwise:
// Throw a DataError.
if (!key_data.has<Bindings::JsonWebKey>())
return WebIDL::DataError::create(m_realm, "keyData is not a JsonWebKey dictionary"_fly_string);
auto& jwk = key_data.get<Bindings::JsonWebKey>();
// 2. If the d field of jwk is present and usages contains an entry which is not "decrypt" or "unwrapKey", then throw a SyntaxError.
if (jwk.d.has_value()) {
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", Bindings::idl_enum_to_string(usage))));
}
}
}
// 3. If the d field of jwk is not present and usages contains an entry which is not "encrypt" or "wrapKey", then throw a SyntaxError.
if (!jwk.d.has_value()) {
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Wrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", Bindings::idl_enum_to_string(usage))));
}
}
}
// 4. If the kty field of jwk is not a case-sensitive string match to "RSA", then throw a DataError.
if (jwk.kty != "RSA"_string)
return WebIDL::DataError::create(m_realm, "Invalid key type"_fly_string);
// 5. If usages is non-empty and the use field of jwk is present and is not a case-sensitive string match to "enc", then throw a DataError.
if (!usages.is_empty() && jwk.use.has_value() && *jwk.use != "enc"_string)
return WebIDL::DataError::create(m_realm, "Invalid use field"_fly_string);
// 6. If the key_ops field of jwk is present, and is invalid according to the requirements of JSON Web Key [JWK]
// or does not contain all of the specified usages values, then throw a DataError.
for (auto const& usage : usages) {
if (!jwk.key_ops->contains_slow(Bindings::idl_enum_to_string(usage)))
return WebIDL::DataError::create(m_realm, MUST(String::formatted("Missing key_ops field: {}", Bindings::idl_enum_to_string(usage))));
}
// FIXME: Validate jwk.key_ops against requirements in https://www.rfc-editor.org/rfc/rfc7517#section-4.3
// 7. If the ext field of jwk is present and has the value false and extractable is true, then throw a DataError.
if (jwk.ext.has_value() && !*jwk.ext && extractable)
return WebIDL::DataError::create(m_realm, "Invalid ext field"_fly_string);
Optional<String> hash = {};
// 8. -> If the alg field of jwk is not present:
if (!jwk.alg.has_value()) {
// Let hash be undefined.
}
// -> If the alg field of jwk is equal to "RSA-OAEP":
if (jwk.alg == "RSA-OAEP"sv) {
// Let hash be the string "SHA-1".
hash = "SHA-1"_string;
}
// -> If the alg field of jwk is equal to "RSA-OAEP-256":
else if (jwk.alg == "RSA-OAEP-256"sv) {
// Let hash be the string "SHA-256".
hash = "SHA-256"_string;
}
// -> If the alg field of jwk is equal to "RSA-OAEP-384":
else if (jwk.alg == "RSA-OAEP-384"sv) {
// Let hash be the string "SHA-384".
hash = "SHA-384"_string;
}
// -> If the alg field of jwk is equal to "RSA-OAEP-512":
else if (jwk.alg == "RSA-OAEP-512"sv) {
// Let hash be the string "SHA-512".
hash = "SHA-512"_string;
}
// -> Otherwise:
else {
// FIXME: Support 'other applicable specifications'
// 1. Perform any key import steps defined by other applicable specifications, passing format, jwk and obtaining hash.
// 2. If an error occurred or there are no applicable specifications, throw a DataError.
return WebIDL::DataError::create(m_realm, "Invalid alg field"_fly_string);
}
// 9. If hash is not undefined:
if (hash.has_value()) {
// 1. Let normalizedHash be the result of normalize an algorithm with alg set to hash and op set to digest.
auto normalized_hash = TRY(normalize_an_algorithm(m_realm, AlgorithmIdentifier { *hash }, "digest"_string));
// 2. If normalizedHash is not equal to the hash member of normalizedAlgorithm, throw a DataError.
if (normalized_hash.parameter->name != TRY(normalized_algorithm.hash.visit([](String const& name) -> JS::ThrowCompletionOr<String> { return name; }, [&](JS::Handle<JS::Object> const& obj) -> JS::ThrowCompletionOr<String> {
auto name_property = TRY(obj->get("name"));
return name_property.to_string(m_realm->vm()); })))
return WebIDL::DataError::create(m_realm, "Invalid hash"_fly_string);
}
// 10. -> If the d field of jwk is present:
if (jwk.d.has_value()) {
// 1. If jwk does not meet the requirements of Section 6.3.2 of JSON Web Algorithms [JWA], then throw a DataError.
bool meets_requirements = jwk.e.has_value() && jwk.n.has_value() && jwk.d.has_value();
if (jwk.p.has_value() || jwk.q.has_value() || jwk.dp.has_value() || jwk.dq.has_value() || jwk.qi.has_value())
meets_requirements |= jwk.p.has_value() && jwk.q.has_value() && jwk.dp.has_value() && jwk.dq.has_value() && jwk.qi.has_value();
if (jwk.oth.has_value()) {
// FIXME: We don't support > 2 primes in RSA keys
meets_requirements = false;
}
if (!meets_requirements)
return WebIDL::DataError::create(m_realm, "Invalid JWK private key"_fly_string);
// FIXME: Spec error, it should say 'the RSA private key identified by interpreting jwk according to section 6.3.2'
// 2. Let privateKey represent the RSA public key identified by interpreting jwk according to Section 6.3.1 of JSON Web Algorithms [JWA].
auto private_key = TRY(parse_jwk_rsa_private_key(realm, jwk));
// FIXME: Spec error, it should say 'not to be a valid RSA private key'
// 3. If privateKey can be determined to not be a valid RSA public key according to [RFC3447], then throw a DataError.
// FIXME: Validate the private key
// 4. Let key be a new CryptoKey representing privateKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key });
// 5. Set the [[type]] internal slot of key to "private"
key->set_type(Bindings::KeyType::Private);
}
// -> Otherwise:
else {
// 1. If jwk does not meet the requirements of Section 6.3.1 of JSON Web Algorithms [JWA], then throw a DataError.
if (!jwk.e.has_value() || !jwk.n.has_value())
return WebIDL::DataError::create(m_realm, "Invalid JWK public key"_fly_string);
// 2. Let publicKey represent the RSA public key identified by interpreting jwk according to Section 6.3.1 of JSON Web Algorithms [JWA].
auto public_key = TRY(parse_jwk_rsa_public_key(realm, jwk));
// 3. If publicKey can be determined to not be a valid RSA public key according to [RFC3447], then throw a DataError.
// FIXME: Validate the public key
// 4. Let key be a new CryptoKey representing publicKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key });
// 5. Set the [[type]] internal slot of key to "public"
key->set_type(Bindings::KeyType::Public);
}
}
// -> Otherwise: throw a NotSupportedError.
else {
return WebIDL::NotSupportedError::create(m_realm, "Unsupported key format"_fly_string);
}
// 3. Let algorithm be a new RsaHashedKeyAlgorithm.
auto algorithm = RsaHashedKeyAlgorithm::create(m_realm);
// 4. Set the name attribute of algorithm to "RSA-OAEP"
algorithm->set_name("RSA-OAEP"_string);
// 5. Set the modulusLength attribute of algorithm to the length, in bits, of the RSA public modulus.
// 6. Set the publicExponent attribute of algorithm to the BigInteger representation of the RSA public exponent.
TRY(key->handle().visit(
[&](::Crypto::PK::RSAPublicKey<> const& public_key) -> WebIDL::ExceptionOr<void> {
algorithm->set_modulus_length(public_key.length());
TRY(algorithm->set_public_exponent(public_key.public_exponent()));
return {};
},
[&](::Crypto::PK::RSAPrivateKey<> const& private_key) -> WebIDL::ExceptionOr<void> {
algorithm->set_modulus_length(private_key.length());
TRY(algorithm->set_public_exponent(private_key.public_exponent()));
return {};
},
[](auto) -> WebIDL::ExceptionOr<void> { VERIFY_NOT_REACHED(); }));
// 7. Set the hash attribute of algorithm to the hash member of normalizedAlgorithm.
algorithm->set_hash(normalized_algorithm.hash);
// 8. Set the [[algorithm]] internal slot of key to algorithm
key->set_algorithm(algorithm);
// 9. Return key.
return JS::NonnullGCPtr { *key };
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::Object>> RSAOAEP::export_key(Bindings::KeyFormat format, JS::NonnullGCPtr<CryptoKey> key)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
// 1. Let key be the key to be exported.
// 2. If the underlying cryptographic key material represented by the [[handle]] internal slot of key cannot be accessed, then throw an OperationError.
// Note: In our impl this is always accessible
auto const& handle = key->handle();
JS::GCPtr<JS::Object> result = nullptr;
// 3. If format is "spki"
if (format == Bindings::KeyFormat::Spki) {
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(realm, "Key is not public"_fly_string);
// 2. Let data be an instance of the subjectPublicKeyInfo ASN.1 structure defined in [RFC5280] with the following properties:
// - Set the algorithm field to an AlgorithmIdentifier ASN.1 type with the following properties:
// - Set the algorithm field to the OID rsaEncryption defined in [RFC3447].
// - Set the params field to the ASN.1 type NULL.
// - Set the subjectPublicKey field to the result of DER-encoding an RSAPublicKey ASN.1 type, as defined in [RFC3447], Appendix A.1.1,
// that represents the RSA public key represented by the [[handle]] internal slot of key
auto maybe_data = handle.visit(
[&](::Crypto::PK::RSAPublicKey<> const& public_key) -> ErrorOr<ByteBuffer> {
auto rsa_encryption_oid = Array<int, 7> { 1, 2, 840, 113549, 1, 1, 1 };
return TRY(::Crypto::PK::wrap_in_subject_public_key_info(public_key, rsa_encryption_oid));
},
[](auto) -> ErrorOr<ByteBuffer> {
VERIFY_NOT_REACHED();
});
// FIXME: clang-format butchers the visit if we do the TRY inline
auto data = TRY_OR_THROW_OOM(vm, maybe_data);
// 3. Let result be the result of creating an ArrayBuffer containing data.
result = JS::ArrayBuffer::create(realm, data);
}
// If format is "pkcs8"
else if (format == Bindings::KeyFormat::Pkcs8) {
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(realm, "Key is not private"_fly_string);
// 2. Let data be the result of encoding a privateKeyInfo structure with the following properties:
// - Set the version field to 0.
// - Set the privateKeyAlgorithm field to an PrivateKeyAlgorithmIdentifier ASN.1 type with the following properties:
// - - Set the algorithm field to the OID rsaEncryption defined in [RFC3447].
// - - Set the params field to the ASN.1 type NULL.
// - Set the privateKey field to the result of DER-encoding an RSAPrivateKey ASN.1 type, as defined in [RFC3447], Appendix A.1.2,
// that represents the RSA private key represented by the [[handle]] internal slot of key
auto maybe_data = handle.visit(
[&](::Crypto::PK::RSAPrivateKey<> const& private_key) -> ErrorOr<ByteBuffer> {
auto rsa_encryption_oid = Array<int, 7> { 1, 2, 840, 113549, 1, 1, 1 };
return TRY(::Crypto::PK::wrap_in_private_key_info(private_key, rsa_encryption_oid));
},
[](auto) -> ErrorOr<ByteBuffer> {
VERIFY_NOT_REACHED();
});
// FIXME: clang-format butchers the visit if we do the TRY inline
auto data = TRY_OR_THROW_OOM(vm, maybe_data);
// 3. Let result be the result of creating an ArrayBuffer containing data.
result = JS::ArrayBuffer::create(realm, data);
}
// If format is "jwk"
else if (format == Bindings::KeyFormat::Jwk) {
// 1. Let jwk be a new JsonWebKey dictionary.
Bindings::JsonWebKey jwk = {};
// 2. Set the kty attribute of jwk to the string "RSA".
jwk.kty = "RSA"_string;
// 4. Let hash be the name attribute of the hash attribute of the [[algorithm]] internal slot of key.
auto hash = TRY(verify_cast<RsaHashedKeyAlgorithm>(*key->algorithm()).hash().visit([](String const& name) -> JS::ThrowCompletionOr<String> { return name; }, [&](JS::Handle<JS::Object> const& obj) -> JS::ThrowCompletionOr<String> {
auto name_property = TRY(obj->get("name"));
return name_property.to_string(realm.vm()); }));
// 4. If hash is "SHA-1":
// - Set the alg attribute of jwk to the string "RSA-OAEP".
if (hash == "SHA-1"sv) {
jwk.alg = "RSA-OAEP"_string;
}
// If hash is "SHA-256":
// - Set the alg attribute of jwk to the string "RSA-OAEP-256".
else if (hash == "SHA-256"sv) {
jwk.alg = "RSA-OAEP-256"_string;
}
// If hash is "SHA-384":
// - Set the alg attribute of jwk to the string "RSA-OAEP-384".
else if (hash == "SHA-384"sv) {
jwk.alg = "RSA-OAEP-384"_string;
}
// If hash is "SHA-512":
// - Set the alg attribute of jwk to the string "RSA-OAEP-512".
else if (hash == "SHA-512"sv) {
jwk.alg = "RSA-OAEP-512"_string;
} else {
// FIXME: Support 'other applicable specifications'
// - Perform any key export steps defined by other applicable specifications,
// passing format and the hash attribute of the [[algorithm]] internal slot of key and obtaining alg.
// - Set the alg attribute of jwk to alg.
return WebIDL::NotSupportedError::create(realm, TRY_OR_THROW_OOM(vm, String::formatted("Unsupported hash algorithm '{}'", hash)));
}
// 10. Set the attributes n and e of jwk according to the corresponding definitions in JSON Web Algorithms [JWA], Section 6.3.1.
auto maybe_error = handle.visit(
[&](::Crypto::PK::RSAPublicKey<> const& public_key) -> ErrorOr<void> {
jwk.n = TRY(base64_url_uint_encode(public_key.modulus()));
jwk.e = TRY(base64_url_uint_encode(public_key.public_exponent()));
return {};
},
[&](::Crypto::PK::RSAPrivateKey<> const& private_key) -> ErrorOr<void> {
jwk.n = TRY(base64_url_uint_encode(private_key.modulus()));
jwk.e = TRY(base64_url_uint_encode(private_key.public_exponent()));
// 11. If the [[type]] internal slot of key is "private":
// 1. Set the attributes named d, p, q, dp, dq, and qi of jwk according to the corresponding definitions in JSON Web Algorithms [JWA], Section 6.3.2.
jwk.d = TRY(base64_url_uint_encode(private_key.private_exponent()));
jwk.p = TRY(base64_url_uint_encode(private_key.prime1()));
jwk.q = TRY(base64_url_uint_encode(private_key.prime2()));
jwk.dp = TRY(base64_url_uint_encode(private_key.exponent1()));
jwk.dq = TRY(base64_url_uint_encode(private_key.exponent2()));
jwk.qi = TRY(base64_url_uint_encode(private_key.coefficient()));
// 12. If the underlying RSA private key represented by the [[handle]] internal slot of key is represented by more than two primes,
// set the attribute named oth of jwk according to the corresponding definition in JSON Web Algorithms [JWA], Section 6.3.2.7
// FIXME: We don't support more than 2 primes on RSA keys
return {};
},
[](auto) -> ErrorOr<void> {
VERIFY_NOT_REACHED();
});
// FIXME: clang-format butchers the visit if we do the TRY inline
TRY_OR_THROW_OOM(vm, maybe_error);
// 13. Set the key_ops attribute of jwk to the usages attribute of key.
jwk.key_ops = Vector<String> {};
jwk.key_ops->ensure_capacity(key->internal_usages().size());
for (auto const& usage : key->internal_usages()) {
jwk.key_ops->append(Bindings::idl_enum_to_string(usage));
}
// 14. Set the ext attribute of jwk to the [[extractable]] internal slot of key.
jwk.ext = key->extractable();
// 15. Let result be the result of converting jwk to an ECMAScript Object, as defined by [WebIDL].
result = TRY(jwk.to_object(realm));
}
// Otherwise throw a NotSupportedError.
else {
return WebIDL::NotSupportedError::create(realm, TRY_OR_THROW_OOM(vm, String::formatted("Exporting to format {} is not supported", Bindings::idl_enum_to_string(format))));
}
// 8. Return result
return JS::NonnullGCPtr { *result };
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> PBKDF2::import_key(AlgorithmParams const&, Bindings::KeyFormat format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If format is not "raw", throw a NotSupportedError
if (format != Bindings::KeyFormat::Raw) {
return WebIDL::NotSupportedError::create(m_realm, "Only raw format is supported"_fly_string);
}
// 2. If usages contains a value that is not "deriveKey" or "deriveBits", then throw a SyntaxError.
for (auto& usage : key_usages) {
if (usage != Bindings::KeyUsage::Derivekey && usage != Bindings::KeyUsage::Derivebits) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 3. If extractable is not false, then throw a SyntaxError.
if (extractable)
return WebIDL::SyntaxError::create(m_realm, "extractable must be false"_fly_string);
// 4. Let key be a new CryptoKey representing keyData.
auto key = CryptoKey::create(m_realm, move(key_data));
// 5. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 6. Set the [[extractable]] internal slot of key to false.
key->set_extractable(false);
// 7. Let algorithm be a new KeyAlgorithm object.
auto algorithm = KeyAlgorithm::create(m_realm);
// 8. Set the name attribute of algorithm to "PBKDF2".
algorithm->set_name("PBKDF2"_string);
// 9. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 10. Return key.
return key;
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> SHA::digest(AlgorithmParams const& algorithm, ByteBuffer const& data)
{
auto& algorithm_name = algorithm.name;
::Crypto::Hash::HashKind hash_kind;
if (algorithm_name.equals_ignoring_ascii_case("SHA-1"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA1;
} else if (algorithm_name.equals_ignoring_ascii_case("SHA-256"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA256;
} else if (algorithm_name.equals_ignoring_ascii_case("SHA-384"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA384;
} else if (algorithm_name.equals_ignoring_ascii_case("SHA-512"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA512;
} else {
return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", algorithm_name)));
}
::Crypto::Hash::Manager hash { hash_kind };
hash.update(data);
auto digest = hash.digest();
auto result_buffer = ByteBuffer::copy(digest.immutable_data(), hash.digest_size());
if (result_buffer.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to create result buffer"_fly_string);
return JS::ArrayBuffer::create(m_realm, result_buffer.release_value());
}
// https://w3c.github.io/webcrypto/#ecdsa-operations
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> ECDSA::generate_key(AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains a value which is not one of "sign" or "verify", then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Sign && usage != Bindings::KeyUsage::Verify) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
auto const& normalized_algorithm = static_cast<EcKeyGenParams const&>(params);
// 2. If the namedCurve member of normalizedAlgorithm is "P-256", "P-384" or "P-521":
// Generate an Elliptic Curve key pair, as defined in [RFC6090]
// with domain parameters for the curve identified by the namedCurve member of normalizedAlgorithm.
Variant<Empty, ::Crypto::Curves::SECP256r1, ::Crypto::Curves::SECP384r1> curve;
if (normalized_algorithm.named_curve.is_one_of("P-256"sv, "P-384"sv, "P-521"sv)) {
if (normalized_algorithm.named_curve.equals_ignoring_ascii_case("P-256"sv))
curve = ::Crypto::Curves::SECP256r1 {};
if (normalized_algorithm.named_curve.equals_ignoring_ascii_case("P-384"sv))
curve = ::Crypto::Curves::SECP384r1 {};
// FIXME: Support P-521
if (normalized_algorithm.named_curve.equals_ignoring_ascii_case("P-521"sv))
return WebIDL::NotSupportedError::create(m_realm, "'P-521' is not supported yet"_fly_string);
} else {
// If the namedCurve member of normalizedAlgorithm is a value specified in an applicable specification:
// Perform the ECDSA generation steps specified in that specification,
// passing in normalizedAlgorithm and resulting in an elliptic curve key pair.
// Otherwise: throw a NotSupportedError
return WebIDL::NotSupportedError::create(m_realm, "Only 'P-256', 'P-384' and 'P-521' is supported"_fly_string);
}
// NOTE: Spec jumps to 6 here for some reason
// 6. If performing the key generation operation results in an error, then throw an OperationError.
auto maybe_private_key_data = curve.visit(
[](Empty const&) -> ErrorOr<ByteBuffer> { return Error::from_string_view("noop error"sv); },
[](auto instance) { return instance.generate_private_key(); });
if (maybe_private_key_data.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to create valid crypto instance"_fly_string);
auto private_key_data = maybe_private_key_data.release_value();
auto maybe_public_key_data = curve.visit(
[](Empty const&) -> ErrorOr<ByteBuffer> { return Error::from_string_view("noop error"sv); },
[&](auto instance) { return instance.generate_public_key(private_key_data); });
if (maybe_public_key_data.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to create valid crypto instance"_fly_string);
auto public_key_data = maybe_public_key_data.release_value();
// 7. Let algorithm be a new EcKeyAlgorithm object.
auto algorithm = EcKeyAlgorithm::create(m_realm);
// 8. Set the name attribute of algorithm to "ECDSA".
algorithm->set_name("ECDSA"_string);
// 9. Set the namedCurve attribute of algorithm to equal the namedCurve member of normalizedAlgorithm.
algorithm->set_named_curve(normalized_algorithm.named_curve);
// 10. Let publicKey be a new CryptoKey representing the public key of the generated key pair.
auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key_data });
// 11. Set the [[type]] internal slot of publicKey to "public"
public_key->set_type(Bindings::KeyType::Public);
// 12. Set the [[algorithm]] internal slot of publicKey to algorithm.
public_key->set_algorithm(algorithm);
// 13. Set the [[extractable]] internal slot of publicKey to true.
public_key->set_extractable(true);
// 14. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "verify" ].
public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Verify } }));
// 15. Let privateKey be a new CryptoKey representing the private key of the generated key pair.
auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key_data });
// 16. Set the [[type]] internal slot of privateKey to "private"
private_key->set_type(Bindings::KeyType::Private);
// 17. Set the [[algorithm]] internal slot of privateKey to algorithm.
private_key->set_algorithm(algorithm);
// 18. Set the [[extractable]] internal slot of privateKey to extractable.
private_key->set_extractable(extractable);
// 19. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "sign" ].
private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Sign } }));
// 20. Let result be a new CryptoKeyPair dictionary.
// 21. Set the publicKey attribute of result to be publicKey.
// 22. Set the privateKey attribute of result to be privateKey.
// 23. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL].
return Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>> { CryptoKeyPair::create(m_realm, public_key, private_key) };
}
// https://w3c.github.io/webcrypto/#ecdsa-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> ECDSA::sign(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& message)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
auto const& normalized_algorithm = static_cast<EcdsaParams const&>(params);
(void)vm;
(void)message;
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_fly_string);
// 2. Let hashAlgorithm be the hash member of normalizedAlgorithm.
[[maybe_unused]] auto const& hash_algorithm = normalized_algorithm.hash;
// NOTE: We dont have sign() on the SECPxxxr1 curves, so we can't implement this yet
// FIXME: 3. Let M be the result of performing the digest operation specified by hashAlgorithm using message.
// FIXME: 4. Let d be the ECDSA private key associated with key.
// FIXME: 5. Let params be the EC domain parameters associated with key.
// FIXME: 6. If the namedCurve attribute of the [[algorithm]] internal slot of key is "P-256", "P-384" or "P-521":
// FIXME: 1. Perform the ECDSA signing process, as specified in [RFC6090], Section 5.4, with M as the message, using params as the EC domain parameters, and with d as the private key.
// FIXME: 2. Let r and s be the pair of integers resulting from performing the ECDSA signing process.
// FIXME: 3. Let result be an empty byte sequence.
// FIXME: 4. Let n be the smallest integer such that n * 8 is greater than the logarithm to base 2 of the order of the base point of the elliptic curve identified by params.
// FIXME: 5. Convert r to an octet string of length n and append this sequence of bytes to result.
// FIXME: 6. Convert s to an octet string of length n and append this sequence of bytes to result.
// FIXME: Otherwise, the namedCurve attribute of the [[algorithm]] internal slot of key is a value specified in an applicable specification:
// FIXME: Perform the ECDSA signature steps specified in that specification, passing in M, params and d and resulting in result.
// NOTE: The spec jumps to 9 here for some reason
// FIXME: 9. Return the result of creating an ArrayBuffer containing result.
return WebIDL::NotSupportedError::create(realm, "ECDSA signing is not supported yet"_fly_string);
}
// https://w3c.github.io/webcrypto/#ecdsa-operations
WebIDL::ExceptionOr<JS::Value> ECDSA::verify(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& signature, ByteBuffer const& message)
{
auto& realm = *m_realm;
auto const& normalized_algorithm = static_cast<EcdsaParams const&>(params);
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(realm, "Key is not a public key"_fly_string);
// 2. Let hashAlgorithm be the hash member of normalizedAlgorithm.
[[maybe_unused]] auto const& hash_algorithm = TRY(normalized_algorithm.hash.visit(
[](String const& name) -> JS::ThrowCompletionOr<String> { return name; },
[&](JS::Handle<JS::Object> const& obj) -> JS::ThrowCompletionOr<String> {
auto name_property = TRY(obj->get("name"));
return name_property.to_string(m_realm->vm()); }));
// 3. Let M be the result of performing the digest operation specified by hashAlgorithm using message.
::Crypto::Hash::HashKind hash_kind;
if (hash_algorithm.equals_ignoring_ascii_case("SHA-1"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA1;
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-256"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA256;
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-384"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA384;
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-512"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA512;
} else {
return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", hash_algorithm)));
}
::Crypto::Hash::Manager hash { hash_kind };
hash.update(message);
auto digest = hash.digest();
auto result_buffer = ByteBuffer::copy(digest.immutable_data(), hash.digest_size());
if (result_buffer.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to create result buffer"_fly_string);
auto M = result_buffer.release_value();
// 4. Let Q be the ECDSA public key associated with key.
auto Q = key->handle().visit(
[](ByteBuffer data) -> ByteBuffer {
return data;
},
[](auto) -> ByteBuffer { VERIFY_NOT_REACHED(); });
// FIXME: 5. Let params be the EC domain parameters associated with key.
// 6. If the namedCurve attribute of the [[algorithm]] internal slot of key is "P-256", "P-384" or "P-521":
auto const& internal_algorithm = static_cast<EcKeyAlgorithm const&>(*key->algorithm());
auto const& named_curve = internal_algorithm.named_curve();
auto result = false;
Variant<Empty, ::Crypto::Curves::SECP256r1, ::Crypto::Curves::SECP384r1> curve;
if (named_curve.is_one_of("P-256"sv, "P-384"sv, "P-521"sv)) {
if (named_curve.equals_ignoring_ascii_case("P-256"sv))
curve = ::Crypto::Curves::SECP256r1 {};
if (named_curve.equals_ignoring_ascii_case("P-384"sv))
curve = ::Crypto::Curves::SECP384r1 {};
// FIXME: Support P-521
if (named_curve.equals_ignoring_ascii_case("P-521"sv))
return WebIDL::NotSupportedError::create(m_realm, "'P-521' is not supported yet"_fly_string);
// Perform the ECDSA verifying process, as specified in [RFC6090], Section 5.3,
// with M as the received message,
// signature as the received signature
// and using params as the EC domain parameters,
// and Q as the public key.
// NOTE: verify() takes the signature in X.509 format but JS uses IEEE P1363 format, so we need to convert it
// FIXME: Dont construct an ASN1 object here just to pass it to verify
auto half_size = signature.size() / 2;
auto r = ::Crypto::UnsignedBigInteger::import_data(signature.data(), half_size);
auto s = ::Crypto::UnsignedBigInteger::import_data(signature.data() + half_size, half_size);
::Crypto::ASN1::Encoder encoder;
(void)encoder.write_constructed(::Crypto::ASN1::Class::Universal, ::Crypto::ASN1::Kind::Sequence, [&] {
(void)encoder.write(r);
(void)encoder.write(s);
});
auto encoded_signature = encoder.finish();
auto maybe_result = curve.visit(
[](Empty const&) -> ErrorOr<bool> { return Error::from_string_view("Failed to create valid crypto instance"sv); },
[&](auto instance) { return instance.verify(M, Q, encoded_signature); });
if (maybe_result.is_error()) {
auto error_message = MUST(FlyString::from_utf8(maybe_result.error().string_literal()));
return WebIDL::OperationError::create(m_realm, error_message);
}
result = maybe_result.release_value();
} else {
// FIXME: Otherwise, the namedCurve attribute of the [[algorithm]] internal slot of key is a value specified in an applicable specification:
// FIXME: Perform the ECDSA verification steps specified in that specification passing in M, signature, params and Q and resulting in an indication of whether or not the purported signature is valid.
}
// 9. Let result be a boolean with the value true if the signature is valid and the value false otherwise.
// 10. Return result.
return JS::Value(result);
}
// https://wicg.github.io/webcrypto-secure-curves/#ed25519-operations
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> ED25519::generate_key([[maybe_unused]] AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains a value which is not one of "sign" or "verify", then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Sign && usage != Bindings::KeyUsage::Verify) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2. Generate an Ed25519 key pair, as defined in [RFC8032], section 5.1.5.
::Crypto::Curves::Ed25519 curve;
auto maybe_private_key = curve.generate_private_key();
if (maybe_private_key.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to generate private key"_fly_string);
auto private_key_data = maybe_private_key.release_value();
auto maybe_public_key = curve.generate_public_key(private_key_data);
if (maybe_public_key.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to generate public key"_fly_string);
auto public_key_data = maybe_public_key.release_value();
// 3. Let algorithm be a new KeyAlgorithm object.
auto algorithm = KeyAlgorithm::create(m_realm);
// 4. Set the name attribute of algorithm to "Ed25519".
algorithm->set_name("Ed25519"_string);
// 5. Let publicKey be a new CryptoKey associated with the relevant global object of this [HTML],
// and representing the public key of the generated key pair.
auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key_data });
// 6. Set the [[type]] internal slot of publicKey to "public"
public_key->set_type(Bindings::KeyType::Public);
// 7. Set the [[algorithm]] internal slot of publicKey to algorithm.
public_key->set_algorithm(algorithm);
// 8. Set the [[extractable]] internal slot of publicKey to true.
public_key->set_extractable(true);
// 9. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "verify" ].
public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Verify } }));
// 10. Let privateKey be a new CryptoKey associated with the relevant global object of this [HTML],
// and representing the private key of the generated key pair.
auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key_data });
// 11. Set the [[type]] internal slot of privateKey to "private"
private_key->set_type(Bindings::KeyType::Private);
// 12. Set the [[algorithm]] internal slot of privateKey to algorithm.
private_key->set_algorithm(algorithm);
// 13. Set the [[extractable]] internal slot of privateKey to extractable.
private_key->set_extractable(extractable);
// 14. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "sign" ].
private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Sign } }));
// 15. Let result be a new CryptoKeyPair dictionary.
// 16. Set the publicKey attribute of result to be publicKey.
// 17. Set the privateKey attribute of result to be privateKey.
// 18. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL].
return Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>> { CryptoKeyPair::create(m_realm, public_key, private_key) };
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> ED25519::sign([[maybe_unused]] AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& message)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_fly_string);
// 2. Perform the Ed25519 signing process, as specified in [RFC8032], Section 5.1.6,
// with message as M, using the Ed25519 private key associated with key.
auto private_key = key->handle().visit(
[](ByteBuffer data) -> ByteBuffer {
return data;
},
[](auto) -> ByteBuffer { VERIFY_NOT_REACHED(); });
::Crypto::Curves::Ed25519 curve;
auto maybe_public_key = curve.generate_public_key(private_key);
if (maybe_public_key.is_error())
return WebIDL::OperationError::create(realm, "Failed to generate public key"_fly_string);
auto public_key = maybe_public_key.release_value();
auto maybe_signature = curve.sign(public_key, private_key, message);
if (maybe_signature.is_error())
return WebIDL::OperationError::create(realm, "Failed to sign message"_fly_string);
auto signature = maybe_signature.release_value();
// 3. Return a new ArrayBuffer associated with the relevant global object of this [HTML],
// and containing the bytes of the signature resulting from performing the Ed25519 signing process.
auto result = TRY_OR_THROW_OOM(vm, ByteBuffer::copy(signature));
return JS::ArrayBuffer::create(realm, move(result));
}
WebIDL::ExceptionOr<JS::Value> ED25519::verify([[maybe_unused]] AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& signature, ByteBuffer const& message)
{
auto& realm = *m_realm;
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(realm, "Key is not a public key"_fly_string);
// NOTE: this is checked by ED25519::verify()
// 2. If the key data of key represents an invalid point or a small-order element on the Elliptic Curve of Ed25519, return false.
// 3. If the point R, encoded in the first half of signature, represents an invalid point or a small-order element on the Elliptic Curve of Ed25519, return false.
// 4. Perform the Ed25519 verification steps, as specified in [RFC8032], Section 5.1.7,
// using the cofactorless (unbatched) equation, [S]B = R + [k]A', on the signature,
// with message as M, using the Ed25519 public key associated with key.
auto public_key = key->handle().visit(
[](ByteBuffer data) -> ByteBuffer {
return data;
},
[](auto) -> ByteBuffer { VERIFY_NOT_REACHED(); });
// 9. Let result be a boolean with the value true if the signature is valid and the value false otherwise.
::Crypto::Curves::Ed25519 curve;
auto result = curve.verify(public_key, signature, message);
// 10. Return result.
return JS::Value(result);
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> PBKDF2::derive_bits(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, Optional<u32> length_optional)
{
auto& realm = *m_realm;
auto const& normalized_algorithm = static_cast<PBKDF2Params const&>(params);
// 1. If length is null or zero, or is not a multiple of 8, then throw an OperationError.
auto length = length_optional.value_or(0);
if (length == 0 || length % 8 != 0)
return WebIDL::OperationError::create(realm, "Length must be greater than 0 and divisible by 8"_fly_string);
// 2. If the iterations member of normalizedAlgorithm is zero, then throw an OperationError.
if (normalized_algorithm.iterations == 0)
return WebIDL::OperationError::create(realm, "Iterations must be greater than 0"_fly_string);
// 3. Let prf be the MAC Generation function described in Section 4 of [FIPS-198-1] using the hash function described by the hash member of normalizedAlgorithm.
auto const& hash_algorithm = TRY(normalized_algorithm.hash.visit(
[](String const& name) -> JS::ThrowCompletionOr<String> { return name; },
[&](JS::Handle<JS::Object> const& obj) -> JS::ThrowCompletionOr<String> {
auto name_property = TRY(obj->get("name"));
return name_property.to_string(m_realm->vm()); }));
// 4. Let result be the result of performing the PBKDF2 operation defined in Section 5.2 of [RFC8018]
// using prf as the pseudo-random function, PRF,
// the password represented by [[handle]] internal slot of key as the password, P,
// the contents of the salt attribute of normalizedAlgorithm as the salt, S,
// the value of the iterations attribute of normalizedAlgorithm as the iteration count, c,
// and length divided by 8 as the intended key length, dkLen.
ErrorOr<ByteBuffer> result = Error::from_string_view("noop error"sv);
auto password = key->handle().visit(
[](ByteBuffer data) -> ByteBuffer {
return data;
},
[](auto) -> ByteBuffer { VERIFY_NOT_REACHED(); });
auto salt = normalized_algorithm.salt;
auto iterations = normalized_algorithm.iterations;
auto derived_key_length_bytes = length / 8;
if (hash_algorithm.equals_ignoring_ascii_case("SHA-1"sv)) {
result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA1>>(password, salt, iterations, derived_key_length_bytes);
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-256"sv)) {
result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA256>>(password, salt, iterations, derived_key_length_bytes);
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-384"sv)) {
result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA384>>(password, salt, iterations, derived_key_length_bytes);
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-512"sv)) {
result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA512>>(password, salt, iterations, derived_key_length_bytes);
} else {
return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", hash_algorithm)));
}
// 5. If the key derivation operation fails, then throw an OperationError.
if (result.is_error())
return WebIDL::OperationError::create(realm, "Failed to derive key"_fly_string);
// 6. Return result
return JS::ArrayBuffer::create(realm, result.release_value());
}
WebIDL::ExceptionOr<JS::Value> PBKDF2::get_key_length(AlgorithmParams const&)
{
// 1. Return null.
return JS::js_null();
}
}