ladybird/Userland/Libraries/LibJS/Bytecode/Interpreter.cpp
Linus Groh 35cc579264 LibJS: Also set ExecutionContext::realm in Bytecode::Interpreter::run()
I forgot to consider the bytecode Interpreter when adding a Realm to the
ExecutionContext. This should make it a lot less crashy again :^)
2021-09-13 21:06:18 +01:00

207 lines
6.6 KiB
C++

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/TemporaryChange.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/Instruction.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Runtime/GlobalEnvironment.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Realm.h>
namespace JS::Bytecode {
static Interpreter* s_current;
Interpreter* Interpreter::current()
{
return s_current;
}
Interpreter::Interpreter(GlobalObject& global_object, Realm& realm)
: m_vm(global_object.vm())
, m_global_object(global_object)
, m_realm(realm)
{
VERIFY(!s_current);
s_current = this;
}
Interpreter::~Interpreter()
{
VERIFY(s_current == this);
s_current = nullptr;
}
Value Interpreter::run(Executable const& executable, BasicBlock const* entry_point)
{
dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter will run unit {:p}", &executable);
TemporaryChange restore_executable { m_current_executable, &executable };
vm().set_last_value(Badge<Interpreter> {}, {});
ExecutionContext execution_context(vm().heap());
if (vm().execution_context_stack().is_empty()) {
execution_context.this_value = &global_object();
static FlyString global_execution_context_name = "(*BC* global execution context)";
execution_context.function_name = global_execution_context_name;
execution_context.lexical_environment = &m_realm.global_environment();
execution_context.variable_environment = &m_realm.global_environment();
execution_context.realm = &m_realm;
// FIXME: How do we know if we're in strict mode? Maybe the Bytecode::Block should know this?
// execution_context.is_strict_mode = ???;
vm().push_execution_context(execution_context, global_object());
VERIFY(!vm().exception());
}
auto block = entry_point ?: &executable.basic_blocks.first();
if (m_manually_entered_frames) {
VERIFY(registers().size() >= executable.number_of_registers);
} else {
m_register_windows.append(make<RegisterWindow>());
registers().resize(executable.number_of_registers);
registers()[Register::global_object_index] = Value(&global_object());
}
for (;;) {
Bytecode::InstructionStreamIterator pc(block->instruction_stream());
bool will_jump = false;
bool will_return = false;
while (!pc.at_end()) {
auto& instruction = *pc;
instruction.execute(*this);
if (vm().exception()) {
m_saved_exception = {};
if (m_unwind_contexts.is_empty())
break;
auto& unwind_context = m_unwind_contexts.last();
if (unwind_context.handler) {
block = unwind_context.handler;
unwind_context.handler = nullptr;
accumulator() = vm().exception()->value();
vm().clear_exception();
will_jump = true;
} else if (unwind_context.finalizer) {
block = unwind_context.finalizer;
m_unwind_contexts.take_last();
will_jump = true;
m_saved_exception = Handle<Exception>::create(vm().exception());
vm().clear_exception();
}
}
if (m_pending_jump.has_value()) {
block = m_pending_jump.release_value();
will_jump = true;
break;
}
if (!m_return_value.is_empty()) {
will_return = true;
break;
}
++pc;
}
if (will_return)
break;
if (pc.at_end() && !will_jump)
break;
if (vm().exception())
break;
}
dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter did run unit {:p}", &executable);
if constexpr (JS_BYTECODE_DEBUG) {
for (size_t i = 0; i < registers().size(); ++i) {
String value_string;
if (registers()[i].is_empty())
value_string = "(empty)";
else
value_string = registers()[i].to_string_without_side_effects();
dbgln("[{:3}] {}", i, value_string);
}
}
vm().set_last_value(Badge<Interpreter> {}, accumulator());
if (!m_manually_entered_frames)
m_register_windows.take_last();
auto return_value = m_return_value.value_or(js_undefined());
m_return_value = {};
// NOTE: The return value from a called function is put into $0 in the caller context.
if (!m_register_windows.is_empty())
m_register_windows.last()[0] = return_value;
if (vm().execution_context_stack().size() == 1)
vm().pop_execution_context();
vm().finish_execution_generation();
return return_value;
}
void Interpreter::enter_unwind_context(Optional<Label> handler_target, Optional<Label> finalizer_target)
{
m_unwind_contexts.empend(handler_target.has_value() ? &handler_target->block() : nullptr, finalizer_target.has_value() ? &finalizer_target->block() : nullptr);
}
void Interpreter::leave_unwind_context()
{
m_unwind_contexts.take_last();
}
void Interpreter::continue_pending_unwind(Label const& resume_label)
{
if (!m_saved_exception.is_null()) {
vm().set_exception(*m_saved_exception.cell());
m_saved_exception = {};
} else {
jump(resume_label);
}
}
AK::Array<OwnPtr<PassManager>, static_cast<UnderlyingType<Interpreter::OptimizationLevel>>(Interpreter::OptimizationLevel::__Count)> Interpreter::s_optimization_pipelines {};
Bytecode::PassManager& Interpreter::optimization_pipeline(Interpreter::OptimizationLevel level)
{
auto underlying_level = to_underlying(level);
VERIFY(underlying_level <= to_underlying(Interpreter::OptimizationLevel::__Count));
auto& entry = s_optimization_pipelines[underlying_level];
if (entry)
return *entry;
auto pm = make<PassManager>();
if (level == OptimizationLevel::Default) {
pm->add<Passes::GenerateCFG>();
pm->add<Passes::UnifySameBlocks>();
pm->add<Passes::GenerateCFG>();
pm->add<Passes::MergeBlocks>();
pm->add<Passes::GenerateCFG>();
pm->add<Passes::UnifySameBlocks>();
pm->add<Passes::GenerateCFG>();
pm->add<Passes::MergeBlocks>();
pm->add<Passes::GenerateCFG>();
pm->add<Passes::PlaceBlocks>();
} else {
VERIFY_NOT_REACHED();
}
auto& passes = *pm;
entry = move(pm);
return passes;
}
}